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Abstract
Many dynamically-typed languages (including JavaScript, Ruby, Python or Racket) support
first-class classes, or related concepts such as first-class traits and/or mixins. In those languages
classes are first-class values and, like any other values, they can be passed as an argument, or
returned from a function. Furthermore first-class classes support dynamic inheritance: i.e. they
can inherit from other classes at runtime, enabling programmers to abstract over the inheritance
hierarchy. In contrast, type system limitations prevent most statically-typed languages from
having first-class classes and dynamic inheritance.

This paper shows the design of SEDEL: a polymorphic statically-typed language with first-
class traits, supporting dynamic inheritance as well as conventional OO features such as dynamic
dispatching and abstract methods. To address the challenges of type-checking first-class traits,
SEDEL employs a type system based on the recent work on disjoint intersection types and dis-
joint polymorphism. The novelty of SEDEL over core disjoint intersection calculi are source
level features for practical OO programming, including first-class traits with dynamic inherit-
ance, dynamic dispatching and abstract methods. Inspired by Cook and Palsberg’s work on the
denotational semantics for inheritance, we show how to design a source language that can be
elaborated into Alpuim et al.’s Fi (a core polymorphic calculus with records supporting disjoint
polymorphism). We illustrate the applicability of SEDEL with several example uses for first-
class traits, and a case study that modularizes programming language interpreters using a highly
modular form of visitors.
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1 Introduction

Many dynamically-typed languages (including JavaScript [1], Ruby [4], Python [2] or
Racket [3]) support first-class classes [26], or related concepts such as first-class mixins
and/or traits. In those languages classes are first-class values and, like any other values, they
can be passed as an argument, or returned from a function. Furthermore first-class classes
support dynamic inheritance: i.e., they can inherit from other classes at runtime, enabling

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
E
C
O
O
P
*

Ar
tifact

*
A
E
C

© Xuan Bi and Bruno C. d. S. Oliveira;
licensed under Creative Commons License CC-BY

32nd European Conference on Object-Oriented Programming (ECOOP 2018).
Editor: Todd Millstein; Article No. 9; pp. 9:1–9:28

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:xbi@cs.hku.hk
mailto:bruno@cs.hku.hk
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2018.9
http://dx.doi.org/10.4230/DARTS.4.3.9
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


9:2 Typed First-Class Traits

programmers to abstract over the inheritance hierarchy. Those features make first-class
classes very powerful and expressive, and enable highly modular and reusable pieces of code,
such as:

const mixin = Base => { return class extends Base { ... } };

In this piece of JavaScript code, mixin is parameterized by a class Base. Note that the
concrete implementation of Base can be even dynamically determined at runtime, for example
after reading a configuration file to decide which class to use as the base class. When applied
to an argument, mixin will create a new class on-the-fly and return that as a result. Later
that class can be instantiated and used to create new objects, as any other classes.

In contrast, most statically-typed languages do not have first-class classes and dynamic
inheritance. While all statically-typed OO languages allow first-class objects (i.e. objects
can be passed as arguments and returned as results), the same is not true for classes.
Classes in languages such Scala, Java or C++ are typically a second-class construct, and
the inheritance hierarchy is statically determined. The closest thing to first-class classes in
languages like Java or Scala are classes such as java.lang.Class that enable representing
classes and interfaces as part of their reflective framework. java.lang.Class can be used
to mimic some of the uses of first-class classes, but in an essentially dynamically-typed
way. Furthermore simulating first-class classes using such mechanisms is highly cumbersome
because classes need to be manipulated programmatically. For example instantiating a new
class cannot be done using the standard new construct, but rather requires going through
API methods of java.lang.Class, such as newInstance, for creating a new instance of a class.

Despite the popularity and expressive power of first-class classes in dynamically-typed
languages, there is surprisingly little work on typing of first-class classes (or related concepts
such as first-class mixins or traits). First-class classes and dynamic inheritance pose well-
known difficulties in terms of typing. For example, in his thesis, Bracha [15] comments several
times on the difficulties of typing dynamic inheritance and first-class mixins, and proposes the
restriction to static inheritance that is also common in statically-typed languages. He also
observes that such restriction poses severe limitations in terms of expressiveness, but that
appeared (at the time) to be a necessary compromise when typing was also desired. Only
recently some progress has been made in statically typing first-class classes and dynamic
inheritance. In particular there are two works in this area: Racket’s gradually typed first-
class classes [51]; and Lee et al.’s model of typed first-class classes [30]. Both works provide
typed models of first-class classes, and they enable encodings of mixins [16] similar to those
employed in dynamically-typed languages.

However, as far as we known no previous work supports statically-typed first-class traits.
Traits [47] are an alternative to mixins, and other models of (multiple) inheritance. The
key difference between traits and mixins lies on the treatment of conflicts when composing
multiple traits/mixins. Mixins adopt an implicit resolution strategy for conflicts, where the
compiler automatically picks one implementation in case of conflicts. For example, Scala uses
the order of mixin composition to determine which implementation to pick in case of conflicts.
Traits, on the other hand, employ an explicit resolution strategy, where the compositions
with conflicts are rejected, and the conflicts are explicitly resolved by programmers.

Schärli et al. [47] make a good case for the advantages of the trait model. In particular,
traits avoid bugs that could arise from accidental conflicts that were not detected by
programmers. With the mixin model, such conflicts would be silently resolved, possibly
resulting in unexpected runtime behaviour due to a wrong method implementation choice.
In a setting with dynamic inheritance and first-class classes this problem is exacerbated by
not knowing all components being composed statically, greatly increasing the possibility
of accidental conflicts. From a modularity point-of-view, the trait model also ensures that
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composition is commutative, thus the order of composition is irrelevant and does not affect
the semantics. Bracha [15] claims that “The only modular solution is to treat the name
collisions as errors...”, strengthening the case for the use of a trait model of composition.
Otherwise, if the semantics is affected by the order of composition, global knowledge about
the full inheritance graph is required to determine which implementations are chosen. Schärli
et al. discuss several other issues with mixins, which can be improved by traits. We refer to
their paper for further details.

This paper presents the design of SEDEL: a polymorphic statically-typed (pure) language
with first-class traits, supporting dynamic inheritance as well as conventional OO features
such as dynamic dispatching and abstract methods. Traits pose additional challenges when
compared to models with first-class classes or mixins, because method conflicts should
be detected statically, even in the presence of features such as dynamic inheritance and
composition and parametric polymorphism. To address the challenges of typing first-class
traits and detecting conflicts statically, SEDEL adopts a polymorphic structural type system
based on disjoint polymorphism [7]. The choice of structural typing is due to its simplicity,
but we think similar ideas should also work in a nominal type system.

The main contribution of this paper is to show how to model source language constructs
for first-class traits and dynamic inheritance, supporting standard OO features such as
dynamic dispatching and abstract methods. Previous work on disjoint intersection types
is aimed at core record calculi, and omits important features for practical OO languages,
including (dynamic) inheritance, dynamic dispatching and abstract methods. Based on Cook
and Palsberg’s work on the denotational semantics for inheritance [19], we show how to
design a source language that can be elaborated into Alpuim et al.’s Fi [7], a polymorphic
calculus with records supporting disjoint polymorphism. SEDEL’s elaboration into Fi is
proved to be both type-safe and coherent. Coherence ensures that the semantics of SEDEL is
unambiguous. In particular this property is useful to ensure that programs using traits are
free of conflicts/ambiguities (even when the types of the object parts being composed are
not fully statically know).

We illustrate the applicability of SEDEL with several example uses for first-class traits.
Furthermore we conduct a case study that modularizes programming language interpreters
using a highly modular form of Object Algebras [39] and Visitors. In particular we show
how SEDEL can easily compose multiple object algebras into a single object algebra. Such
composition operation has previously been shown to be highly challenging in languages like
Java or Scala [41, 44]. The previous state-of-the-art implementations for such operation
require employing type-unsafe reflective techniques to simulate the features of first-class
classes. Moreover conflicts are not statically detected. In contrast the approach in this paper
is fully type-safe, convenient to use and conflicts are statically detected.

In summary the contributions of this paper are:
Typed first-class traits: We present SEDEL: a statically-typed language design that
supports first-class traits, dynamic inheritance, as well as standard high-level OO con-
structs such as dynamic dispatching and abstract methods.
Elaboration of first-class traits into disjoint intersection types/polymorphism:
We show how the semantics of SEDEL can be defined by elaboration into Alpuim et
al.’s Fi [7]. The elaboration is inspired by the work of Cook and Palsberg [19] to model
inheritance.
Implementation and modularization case study: SEDEL is implemented and avail-
able.1 To evaluate SEDEL we conduct a case study. The case study shows that support

1 The implementation, case study code and appendix are available at https://goo.gl/uFrWkr.
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for composition of Object Algebras and Visitors is greatly improved in SEDEL. Using
such improved design patterns we re-code the interpreters in Cook’s undergraduate
Programming Languages book [18] in a modular way in SEDEL.

2 Overview

This section aims at introducing first-class classes and traits, their possible uses and applica-
tions, as well as the typing challenges that arise from their use. We start by describing a
hypothetical JavaScript library for text editing widgets, inspired and adapted from Racket’s
GUI toolkit [51]. The example is illustrative of typical uses of dynamic inheritance/compos-
ition, and also the typing challenges in the presence of first-class classes/traits. Without
diving into technical details, we then give the corresponding typed version in SEDEL, and
informally presents its salient features.

2.1 First-Class Classes in JavaScript
A class construct was officially added to JavaScript in the ECMAScript 2015 Language
Specification [23]. One purpose of adding classes to JavaScript was to support a construct
that is more familiar to programmers who come from mainstream class-based languages,
such as Java or C++. However classes in JavaScript are first-class and support functionality
not easily mimicked in statically-typed class-based languages.

Conventional Classes. Before diving into the more advanced features of JavaScript classes,
we first review the more conventional class declarations supported in JavaScript as well as
many other languages. Even for conventional classes there are some interesting points to note
about JavaScript that will be important when we move into a typed setting. An example of
a JavaScript class declaration is:

class Editor {
onKey(key) { return "Pressing " + key; }
doCut() { return this.onKey("C-x") + " for cutting text"; }
showHelp() { return "Version: " + this.version() + " Basic usage..."; }

};

This form of class definition is standard and very similar to declarations in class-based
languages (for example Java). The Editor class defines three methods: onKey for handling
key events, doCut for cutting text and showHelp for displaying help message. For the purpose
of demonstration, we elide the actual implementation, and replace it with plain messages.

We wish to bring the readers’ attention to two points in the above class. Firstly, note that
the doCut method is defined in terms of the onKey method via the keyword this . In other
words the call to onKey is enabled by the self reference and is dynamically dispatched (i.e.,
the particular implementation of onKey will only be determined when the class or subclass is
instantiated). Secondly, notice that there is no definition of the version method in the class
body, but such method is used inside the showHelp method. In a untyped language, such
as JavaScript, using undefined methods is error prone – accidentally instantiating Editor
and then calling showHelp will cause a runtime error! Statically-typed languages usually
provide some means to protect us from this situation. For example, in Java, we would need
an abstract version method, which effectively makes Editor an abstract class and prevents
it from being instantiated. As we will see, SEDEL’s treatment of abstract methods is quite
different from mainstream languages. In fact, SEDEL has a unified (typing) mechanism
for dealing with both dynamic dispatch and abstract methods. We will describe SEDEL’s
mechanism for dealing with both features and justify our design in Section 3.
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First-Class Classes and Class Expressions. Another way to define a class in JavaScript is
via a class expression. This is where the class model in JavaScript is very different from
the traditional class model found in many mainstream OO languages, such as Java, where
classes are second-class (static) entities. JavaScript embraces a dynamic class model that
treats classes as first-class expressions: a function can take classes as arguments, or return
them as a result. First-class classes enable programmers to abstract over patterns in the
class hierarchy and to experiment with new forms of OOP such as mixins and traits. In
particular, mixins become programmer-defined constructs. We illustrate this by presenting a
simple mixin that adds spell checking to an editor:

const spellMixin = Base => {
return class extends Base {

check() { return super.onKey("C-c") + " for spell checking"; }
onKey(key) { return "Process " + key + " on spell editor"; }

}
};

In JavaScript, a mixin is simply a function with a superclass as input and a subclass extending
that superclass as an output. Concretely, spellMixin adds a method check for spell checking.
It also provides a method onKey. The function spellMixin shows the typical use of what
we call dynamic inheritance. Note that Base, which is supposed to be a superclass being
inherited, is parameterized. Therefore spellMixin can be applied to any base class at runtime.
This is impossible to do, in a type-safe way, in conventional statically-typed class-based
languages like Java or C++.2

It is noteworthy that not all applications of spellMixin to base classes are successful.
Notice the use of the super keyword in the check method. If the base class does not implement
the onKey method, then mixin application fails with a runtime error. In a typed setting, a
type system must express this requirement (i.e., the presence of the onKey method) on the
(statically unknown) base class that is being inherited.

We invite the readers to pause for a while and think about what the type of spellMixin
would look like. Clearly our type system should be flexible enough to express this kind of
dynamic pattern of composition in order to accommodate mixins (or traits), but also not too
lenient to allow any composition.

Mixin Composition and Conflicts. The real power of mixins is that spellMixin’s function-
ality is not tied to a particular class hierarchy and is composable with other features. For
example, we can define another mixin that adds simple modal editing – as in Vim – to an
arbitrary editor:

const modalMixin = Base => {
return class extends Base {

constructor() {
super();
this.mode = "command";

}
toggleMode() { return "toggle succeeded"; }
onKey(key) { return "Process " + key + " on modal editor"; }

};
};

2 With C++ templates, it is possible to implement a so-called mixin pattern [49], which enables extending
a parameterized class. However C++ templates defer type-checking until instantiation, and such pattern
still does not allow selection of the base class at runtime (only at up to class instantiation time).

ECOOP 2018



9:6 Typed First-Class Traits

modalMixin adds a mode field that controls which keybindings are active, initially set to the
command mode, and a method toggleMode that is used to switch between modes. It also
provides a method onKey.

Now we can compose spellMixin with modalMixin to produce a combination of function-
ality, mimicking some form of multiple inheritance:

class IDEEditor extends modalMixin(spellMixin(Editor)) {
version() { return 0.2; }

}

The class IDEEditor extends the base class Editor with modal editing and spell checking
capabilities. It also defines the missing version method.

At first glance, IDEEditor looks quite fine, but it has a subtle issue. Recall that two
mixins modalMixin and spellMixin both provide a method onKey, and the Editor class also
defines an onKey method of its own. Now we have a name clash. A question arises as to
which one gets picked inside the IDEEditor class. A typical mixin model resolves this issue
by looking at the order of mixin applications. Mixins appearing later in the order overrides
all the identically named methods of earlier mixins. So in our case, onKey in modalMixin gets
picked. If we change the order of application to spellMixin(modalMixin(Editor)), then onKey
in spellMixin is inherited.

Problem of Mixin Composition. From the above discussion, we can see that mixin are
composed linearly: all the mixins used by a class must be applied one at a time. However,
when we wish to resolve conflicts by selecting features from different mixins, we may not
be able to find a suitable order. For example, when we compose the two mixins to make
the class IDEEditor, we can choose which of them comes first, but in either order, IDEEditor
cannot access to the onKey method in the Editor class.

Trait Model. Because of the total ordering and the limited means for resolving conflicts
imposed by the mixin model, researchers have proposed a simple compositional model called
traits [47, 21]. Traits are lightweight entities and serve as the primitive units of code reuse.
Among others, the key difference from mixins is that the order of trait composition is
irrelevant, and conflicting methods must be resolved explicitly. This gives programmers fine-
grained control, when conflicts arise, of selecting desired features from different components.
Thus we believe traits are a better model for multiple inheritance in statically-typed OO
languages, and in SEDEL we realize this vision by giving traits a first-class status in the
language, achieving more expressive power compared with traditional (second-class) traits.

Summary of Typing Challenges. From our previous discussion, we can identify the following
typing challenges for a type system to accommodate the programming patterns (first-class
classes/mixins) we have just seen in a typed setting:

How to account for, in a typed way, abstract methods and dynamic dispatch.
What are the types of first-class classes or mixins.
How to type dynamic inheritance.
How to express constraints on method presence and absence (the use of super clearly
demands that).
In the presence of first-class traits, how to detect conflicts statically, even when the traits
involved are not statically known.

SEDEL elegantly solves the above challenges in a unified way, as we will see next.
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2.2 A Glance at Typed First-Class Traits in SEDEL
We now rewrite the above library in SEDEL, but this time with types. The resulting code
has the same functionality as the dynamic version, but is statically typed. All code snippets
in this and later sections are runnable in our prototype implementation. Before proceeding,
we ask the readers to bear in mind that in this section we are not using traits in the most
canonical way, i.e., we use traits as if they are classes (but with built-in conflict detection).
This is because we are trying to stay as close as possible to the structure of the JavaScript
version for ease of comparison. In Section 3 we will remedy this to make better use of traits.

Simple Traits. Below is a simple trait editor, which corresponds to the JavaScript class
Editor. The editor trait defines the same set of methods: on_key, do_cut and show_help:

trait editor [self : Editor & Version] => {
on_key(key : String) = "Pressing " ++ key;
do_cut = self.on_key "C-x" ++ " for cutting text";
show_help = "Version: " ++ self.version ++ " Basic usage..."

};

The first thing to notice is that SEDEL uses a syntax (similar to Scala’s self type annota-
tions [36]) where we can give a type annotation to the self reference. In the type of self we
use & construct to create intersection types. Editor and Version are two record types:

type Editor = {on_key : String → String, do_cut : String, show_help : String};
type Version = {version : String};

For the sake of conciseness, SEDEL uses type aliases to abbreviate types.

Self-Types Encode Abstract Methods. Recall that in the JavaScript class Editor, the
version method is undefined, but is used inside showHelp. How can we express this in
the typed setting, if not with an abstract method? In SEDEL, self-types play the role of
trait requirements. As the first approximation, we can justify the use of self.version by
noticing that (part of) the type of self (i.e., Version) contains the declaration of version.
An interesting aspect of SEDEL’s trait model is that there is no need for abstract methods.
Instead, abstract methods can be simulated as requirements of a trait. Later, when the trait
is composed with other traits, all requirements on the self-types must be satisfied and one of
the traits in the composition must provide an implementation of the method version.

As in the JavaScript version, the on_key method is invoked on self in the body of do_cut.
This is allowed as (part of) the type of self (i.e., Editor) contains the signature of on_key.
Comparing editor to the JavaScript class Editor, almost everything stays the same, except
that we now have the typed version. As a side note, since SEDEL is currently a pure functional
OO language, there is no difference between fields and methods, so we can omit empty
arguments and parameter parentheses.

First-Class Traits and Trait Expressions. SEDEL treats traits as first-class expressions,
putting them in the same syntactic category as objects, functions, and other primitive forms.
To illustrate this, we give the SEDEL version of spellMixin:

type Spelling = {check : String};
type OnKey = {on_key : String → String};

spell_mixin [A * Spelling & OnKey] (base : Trait[Editor & Version, Editor & A]) =
trait [self : Editor & Version] inherits base => {
override on_key(key : String) = "Process " ++ key ++ " on spell editor";
check = super.on_key "C-c" ++ " for spelling check"

};

ECOOP 2018
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This looks daunting at first, but spell_mixin has almost the same structure as its JavaScript
cousin spellMixin, albeit with some type annotations. In SEDEL, we use capital letters (A, B,
. . . ) to denote type variables, and trait expressions trait [self : ...] inherits ... => {...}
to create first-class traits. Trait expressions have trait types of the form Trait[T1, T2] where
T1 and T2 denote trait requirements and functionality respectively. We will explain trait types
in Section 3. Despite the structural similarities, there are several significant features that are
unique to SEDEL (e.g., the disjointness operator *). We discuss these in the following.

Disjoint Polymorphism and Conflict Detection. SEDEL uses a type system based on
disjoint intersection types [40] and disjoint polymorphism [7]. Disjoint intersections empower
SEDEL to detect conflicts statically when trying to compose two traits with identically named
features. For example composing two traits a and b that both provide foo gives a type error
(the overloaded & operator denotes trait composition):

trait a => { foo = 1 };
trait b => { foo = 2 };
trait c inherits a & b => {}; -- type error!

Disjoint polymorphism, as a more advanced mechanism, allows detecting conflicts even in
the presence of polymorphism – for example when a trait is parameterized and its full set
of methods is not statically known. As can be seen, spell_mixin is actually a polymorphic
function. Unlike ordinary parametric polymorphism, in SEDEL, a type variable can also
have a disjointness constraint. For instance, A * Spelling & OnKey means that A can be
instantiated to any type as long as it does not contain check and on_key. To mimic mixins,
the argument base, which is supposed to be some trait, serves as the “base” trait that is
being inherited. Notice that the type variable A appears in the type of base, which essentially
states that base is a trait that contains at least those methods specified by Editor, and
possibly more (which we do not know statically). Also note that leaving out the override
keyword will result in a type error. The type system is forcing us to be very specific as to
what is the intention of the on_key method because it sees the same method is also declared
in base, and blindly inheriting base will definitely cause a method conflict. As a final note,
the use of super inside check is allowed because the “super” trait base implements on_key, as
can be seen from its type.

Dynamic Inheritance. Disjoint polymorphism enables us to correctly type dynamic inher-
itance: spell_mixin is able to take any trait that conforms with its assigned type, equips
it with the check method and overrides its old on_key method. As a side note, the use of
disjoint polymorphism is essential to correctly model the mixin semantics. From the type
we know base has some features specified by Editor, plus something more denoted by A. By
inheriting base, we are guaranteed that the result trait will have everything that is already
contained in base, plus more features. This is in some sense similar to row polymorphism [55]
in that the result trait is prohibited from forgetting methods from the argument trait. As we
will discuss in Section 6, disjoint polymorphism is more expressive than row polymorphism.

Typing Mixin Composition. Next we give the typed version of modalMixin as follows:
type ModalEdit = {mode : String, toggle_mode : String};

modal_mixin [A * ModalEdit & OnKey] (base : Trait[Editor & Version, Editor & A]) =
trait [self : Editor & Version] inherits base => {
override on_key(key : String) = "Process " ++ key ++ " on modal editor";
mode = "command";
toggle_mode = "toggle succeeded"

};
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Now the definition of modal_mixin should be self-explanatory. Finally we can apply both
“mixins” one by one to editor to create a concrete editor:

type IDEEditor = Editor & Version & Spelling & ModalEdit;

trait ide_editor [self : IDEEditor]
inherits modal_mixin Spelling (spell_mixin > editor) => { version = "0.2" };

As with the JavaScript version, we need to fill in the missing version method. It is easy
to verify that the on_key method in modal_mixin is inherited. Compared with the untyped
version, here this behaviour is reasonable because in each mixin we specifically tags the
on_key method to be an overriding method. Let us take a close look at the mixin applications.
Since SEDEL is currently explicitly typed, we need to provide concrete types when using
modal_mixin and spell_mixin. In the inner application (spell_mixin > editor), we use the
top type > to instantiate A because the editor trait provides exactly those method specified by
Editor and nothing more (hence >). In the outer application, we use Spelling to instantiate A.
This is where implicit conflict resolution of mixins happens. We know the result of the inner
application actually forms a trait that provides both check and on_key, but the disjointness
constraint of A requires the absence of on_key, thus we cannot instantiate A to Spelling &
OnKey for example when applying modal_mixin. Therefore the outer application effectively
excludes on_key from spell_mixin. In summary, the order of mixin applications is reflected
by the order of function applications, and conflict resolution code is implicitly embedded.
Of course changing the mixin application order to spell_mixin ModalEdit (modal_mixin >
editor) gives the expected behaviour.

Admittedly the typed version is unnecessarily complicated as we were mimicking mixins
by functions over traits. The final editor ide_editor suffers from the same problem as the
class IDEEditor, since there is no obvious way to access the on_key method in the editor
trait.3 Section 3 makes better use of traits to simplify the editor code.

3 Typed First-Class Traits

In Section 2 we have seen some examples of first-class traits at work in SEDEL. In this section
we give a detailed account of SEDEL’s support for typed first-class traits, to complement
what has been presented so far. In doing so, we simplify the examples in Section 2 to make
better use of traits. Section 4 presents the formal type system of first-class traits.

3.1 Traits in SEDEL
SEDEL supports a simple, yet expressive form of traits [47]. Traits provide a simple mechanism
for find-grained code reuse, which can be regarded as a disciplined form of multiple inheritance.
A trait is similar to a mixin in that it encapsulates a collection of related methods to be added
to a class. The practical difference between traits and mixins is the way conflicting features
that typically arise in multiple inheritance are dealt with. Instead of automatically resolved
by scoping rules, conflicts are, in SEDEL, detected by the type system, and explicitly resolved
by the programmer. Compared with traditional trait models, there are three interesting
points about SEDEL’s traits: (1) they are statically typed; (2) they are first-class values; and
(3) they support dynamic inheritance. The support for such combination of features is one of
the key novelties of SEDEL. Another minor difference from traditional traits (e.g., in Scala)
is that, due to the use of structural types, a trait name is not a type.

3 In fact, as we will see in Section 3, we can still access on_key in editor by the forwarding operator.

ECOOP 2018
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3.2 Two Roles of Traits in SEDEL
Traits as Templates for Creating Objects. An obvious difference between traits in SEDEL
and many other models of traits [47, 25, 37] is that they directly serve as templates for objects.
In many other trait models, traits are complemented by classes, which take the responsibility
for object creation. In particular, most models of traits do not allow constructors for traits.
However, a trait in SEDEL has a single constructor of the same name. Take our last trait
ide_editor in Section 2 for example:

a_editor1 = new[IDEEditor] ide_editor;

As with conventional OO languages, the keyword new is used to create an object. A difference
to other OO languages is that the keyword new also specifies the intended type of the object.
We instantiate the ide_editor trait and create an object a_editor1 of type IDEEditor. As
we will see in Section 3.4, constructors with parameters can also be expressed.

It is tempting to try to instantiate the editor trait such as new[Editor] editor. However
this results in a type error, because as we discussed, editor has no definition of version, and
blindly instantiating it would cause runtime error. This behaviour is on a par with Java’s
abstract classes – traits with undefined methods cannot be instantiated on their own.

Traits as Units of Code Reuse. The traditional role of traits is to serve as units of code
reuse. SEDEL’s traits can have this role as well. Our spell_mixin function in Section 2 is
more complicated than it should be. This is because we were mimicking classes as traits, and
mixins as functions over traits. Instead, traits already provide a mechanism of code reuse.
To illustrate this, we simplify spell_mixin as follows:

trait spell [self : OnKey] => {
on_key(key : String) = "Process " ++ key ++ " on spell editor";
check = self.on_key "C-c" ++ " for spell checking"

};

This is much cleaner. The trait spell adds a method check. It also defines a method on_key.
A key difference with spell_mixin is that on_key is invoked on the self parameter instead of
super. Note that this does not necessarily mean check will call on_key defined in the same
trait. As we will see, the actual behaviour entirely depends on how we compose spell with
other traits. One minor difference is that we do not need to tag on_key with the override
keyword, because spell stands as a standalone entity. Another interesting point is that
the self-type OnKey is not the same as that of the trait body, which also contains the check
method. In SEDEL, self-types of traits are known as trait requirements.

Classes and/or Traits. In the literature on traits [21, 47], the aforementioned two roles are
considered as competing. One reason of the two roles conflicting in class-based languages is
because a class must adopt a fixed position in the class hierarchy and therefore it can be
difficult to reuse and resolve conflicts, whereas in SEDEL, a trait is a standalone entity and
is not tied to any particular hierarchy. Therefore we can view our traits either as generators
of instances, or units of reuse. Another important reason why our model can do just with
traits is because we have a pure language. Mutable state can often only appear in classes in
imperative models of traits, which is a good reason for having both classes and traits.

3.3 Trait Types and Trait Requirements
Object Types and Trait Types. SEDEL adopts a relatively standard foundational model of
object-oriented constructs [30] where objects are encoded as records with a structural type.
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This is why the type of the object a_editor1 is the record type IDEEditor. In SEDEL, an
object type is different from a trait type. A trait type is specified with the keyword Trait.
For example, the type of the spell trait is Trait[OnKey, OnKey & Spelling].

Trait Requirements and Functionality. In general, a trait type Trait[T1, T2] specifies both
the requirements T1 and the functionality T2 of a trait. The requirements of a trait denote the
types/methods that the trait needs to support for defining the functionality it provides. Both
are reflected in the trait type. For example, spell has type Trait[OnKey, OnKey & Spelling],
which means that spell requires some implementation of the on_key method, and it provides
implementations for the on_key and check methods. When a trait has no requirements, the
absence of a requirement is denoted by using the top type (>). A simplified sugar Trait[T]
is used to denote a trait without requirements, but providing functionality T.

Trait Requirements as Abstract Methods. Let us go back to our very first trait editor.
Note how in editor the type of the self parameter is Editor & Version, where Version
contains a declaration of the version method that is needed for the definition of show_help.
Note also that the trait itself does not actually contain a version definition. In many other
OO models a similar program could be achieved by having an abstract definition of version.
In SEDEL there are no abstract definitions (methods or fields), but a similar result can
be achieved via trait requirements. Requirements of a trait are met at the object creation
point. For example, as we mentioned before, the editor trait alone cannot be instantiated
since it lacks version. However, when it is composed with a trait that provides version, the
composition can be instantiated, as shown below:

trait foo => { version = "0.2" };
bar = new[Editor & Version] foo & editor;

SEDEL uses a syntax where the self parameter can be explicitly named (not necessarily
named self) with a type annotation. When the self parameter is omitted (for example in the
foo trait above), its type defaults to >. This is different from typical OO languages, where
the default type of the self parameter is the same as the class being defined.

Intersection Types Model Subtyping. IDEEditor is defined as an intersection type (Editor
& Version & Spelling & ModalEdit). Intersection types [20, 43] have been woven into many
modern languages these days. A notable example is Scala, which makes fundamental use of
intersection types to express a class/trait that extends multiple other traits. An intersection
type such as T1 & T2 contains exactly those values which can be used as values of type T1 and
of type T2, and as such, T1 & T2 immediately introduces a subtyping relation between itself
and its two constituent types T1 and T2. Unsurprisingly, IDEEditor is a subtype of Editor.

3.4 Traits with Parameters and First-Class Traits
So far our uses of traits involve no parameters. Instead of inventing another trait syntax
with parameters, a trait with parameters is just a function that produces a trait expression,
since functions already have parameters of their own. This is one benefit of having first-class
traits in terms of language economy. To illustrate, let us simplify modal_mixin in a similar
way as in spell_mixin:

modal (init_mode : String) = trait => {
on_key(key : String) = "Process " ++ key ++ " on modal editor";
mode = init_mode;
toggle_mode = "toggle succeeded"

};
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The first thing to notice is that modal is a function with one argument, and returns a trait
expression, which essentially makes modal a trait with one parameter. Now it is easy to
see that a trait declaration trait name [self : ...] => {...} is just syntactic sugar for
function definition name = trait [self : ...] => {...}. The body of the modal trait is
straightforward. We initialize the mode field to init_mode. The modal trait also comes with a
constructor with one parameter, so we can do new[ModalEdit] (modal "insert") for example.

3.5 Detecting and Resolving Conflicts in Trait Composition
A common problem in multiple inheritance is how to detect and/or resolve conflicts. For
example, when inheriting from two traits that have the same field, then it is unclear which
implementation to choose. There are various approaches to dealing with conflicts. The
trait-based approach requires conflicts to be resolved at the level of the composition, otherwise
the program is rejected by the type system. SEDEL provides a means to help resolve conflicts.

We start by assembling all the traits defined in this section to create the final editor with
the same functionality as ide_editor in Section 2. Our first try is as follows:

ide_editor (init_mode : String) = trait [self : IDEEditor]
-- conflict
inherits editor & spell & modal init_mode => { version = "0.2" };

Unfortunately the above trait gets rejected by SEDEL because editor, spell and modal all
define an on_key method. Recall that in Section 2, when we use a mixin-style composition,
the conflict resolution code has been hardwired in the definition. However, in a trait-style
composition, this is not the case: conflicts must be resolved explicitly. The above definition is
ill-typed precisely because there is a conflicting method on_key, thus violating the disjointness
conditions of disjoint intersection types.

Resolving Conflicts. To resolve the conflict, we need to explicitly state which on_key gets
to stay. SEDEL provides such a means, the so-called exclusion operator (denoted by \),
which allows one to exclude a field/method from a given trait. The following matches the
behaviour in Section 2 where on_key in the modal trait is selected:

ide_editor (init_mode : String) = trait [self : IDEEditor]
inherits editor \ {on_key : String → String} &

spell \ {on_key : String → String} & modal init_mode =>
{ version = "0.2" };

Now the above code type checks. We can also select on_key in the spell trait as easily:

ide_editor2 (init_mode : String) = trait [self : IDEEditor]
inherits editor \ {on_key : String → String} &

spell & (modal init_mode) \ {on_key : String → String} =>
{ version = "0.2" };

In Section 2 we mentioned that in the mixin style, it is impossible to select on_key in the
editor trait, but this is not a problem here:

ide_editor3 (init_mode : String) = trait [self : IDEEditor]
inherits editor & spell \ {on_key : String → String} &

(modal init_mode) \ {on_key : String → String} =>
{ version = "0.2" };

The Forwarding Operator. Another operator that SEDEL provides is the so-called for-
warding operator, which can be useful when we want to access some method that has been
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explicitly excluded in the inherits clause. This is a common scenario in diamond inheritance,
where super is not enough. Below we show a variant of ide_editor:

ide_editor4 (init_mode : String) = trait [self : IDEEditor]
inherits editor \ {on_key : String → String} &

spell \ {on_key : String → String} &
modal init_mode => {

version = "0.2";
override on_key(key : String) =
super.on_key key ++ " and " ++ (spell ^ self).on_key key

};

Notice that on_key in spell has been excluded. However, we can still access it by using
the forwarding operator as in spell ^ self, which gives full access to all the methods in
spell. Also note that using super only gives us access to on_key in the modal trait. To see
ide_editor4 in action, we create a small test:

a_editor2 = new[IDEEditor] (ide_editor4 "command");
main = a_editor2.do_cut
-- "Process C-x on modal editor and Process C-x on spell editor for cutting text"

3.6 Disjoint Polymorphism and Dynamic Composition
SEDEL supports disjoint polymorphism. The combination of disjoint polymorphism and
first-class traits enables the highly modular code where traits with statically unknown types
can be instantiated and composed in a type-safe way! The following is illustrative of this:

merge A [B * A] (x : Trait[A]) (y : Trait[B]) = new[A & B] x & y;

The merge function takes two traits x and y of some arbitrary types A and B, composes them,
and instantiates an object with the resulting composed trait. Clearly such composition
cannot always work if A and B can have conflicts. However, merge has a constraint B * A that
ensures that whatever types are used to instantiate A and B they must be disjoint. Thus,
under the assumption that A and B are disjoint the code type-checks. We want to emphasize
that row polymorphism is unable to express this kind of disjointness of two polymorphic
types, thus systems using row polymorphism is unable to define the merge function, which
plays an essential role in Section 5.

4 Formalizing Typed First-Class Traits

This section presents the syntax and semantics of SEDEL. In particular, we show how to
elaborate high-level source language constructs (self-references, abstract methods, first-class
traits, dynamic inheritance, etc) in SEDEL to Fi [7], a pure record calculus with disjoint
polymorphism. The treatment of the self-reference and dynamic dispatching is inspired by
Cook and Palsberg’s work on the denotational semantics for inheritance [19]. We then prove
the elaboration is type safe, i.e., well-typed SEDEL expressions are translated to well-typed
Fi terms. Finally we show that SEDEL is coherent. Full proofs can be found in the appendix.

4.1 Syntax
The core syntax of SEDEL is shown in Fig. 1, with trait related constructs highlighted . For
brevity of the meta-theoretic study, we do not consider definitions, which can be added in
standard ways.
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Types A,B,C ::= > | Int | A→ B | A & B | {l : A} | α | ∀ (α ∗A).B | Trait [A,B]
Expressions E ::= > | i | x | λx.E | E1 E2 | Λ (α ∗A).E | E A | E1 , , E2 | E : A

| {l = E} | E . l | letrec x : A = E1 in E2 | new [A]( Ei
i ) | E1^ E2

| trait [self : B] inherits Ei
i { lj = E ′

j
j } : A

Contexts Γ ::= • | Γ, x : A | Γ, α ∗A

Record types {l1 : A1, ... , ln : An} := {l1 : A1}& ... & {ln : An}
Records {l1 = E1, ... , ln = En} := {l1 = E1} , , ... , , {ln = En}

Figure 1 SEDEL core syntax and syntactic abbreviations.

Types. Metavariables A, B, C range over types. Types include a top type >, type of
integers Int, function types A→ B, intersection types A & B, singleton record types {l : A},
type variables α and disjoint (universal) quantification ∀ (α ∗ A).B. The main novelty is the
type of first-class traits Trait [A,B], which expresses the requirement A and the functionality
B. We will use [A/α]B to denote capture-avoiding substitution of A for α inside B.

Expressions. Metavariable E ranges over expressions. We start with constructs required
to encode objects based on records: term variables x, lambda abstractions λx.E , function
applications E1 E2, singleton records {l = E}, record projections E . l, recursive let bindings
letrec x : A = E1 in E2, disjoint type abstraction Λ (α ∗A).E and type application E A. The
calculus also supports a merge construct E1 , , E2 for creating values of intersection types and
annotated expressions E : A. We also include a canonical top value > and integer literals i.

First-class traits and trait expressions. The central construct of SEDEL is the trait
expressiontrait [self : B] inherits Ei

i { lj = E ′
j

j
} : A, which specifies a (possibly empty)

list of trait expressions Ei in the inherits clause, an explicit self reference (with type an-
notation B), and a set of methods {lj = E′

j}. Intuitively this trait expression has type
Trait [B,A]. Unlike the conventional trait model, a trait expression denotes a first-class
value: it may occur anywhere where an expression is expected. Trait instantiation expressions
new [A]( Ei

i ) instantiate a composition of trait expressions Ei to create an object of type A.
Finally E1^E2 is the forwarding expression, where E1 should be some trait.

Abbreviations. For ease of programming, multiple-field record types are merely syntactic
sugar for intersections of single-field record types. Similarly, multi-field record expressions
are syntactic sugar for merges of single-field records.

4.2 Semantics
Subtyping and Well-formedness. Figure 2 shows the most relevant subtyping and well-
formedness rules for SEDEL. Omitted rules are standard and can be found in previous work [7].
The subtyping rule for trait types (rule Sub-trait) resembles the one for function types
(rule Sub-arr) in that it is contravariant on the first type A and covariant on the second
type B. The well-formedness rule for trait types is straightforward.

Disjointness. Figure 3 shows the disjointness judgment Γ ` A∗B, which is used for example
in rule WF-and. The disjointness checking is the underlying mechanism of conflict detection.
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A <: B (Subtyping)

B1 <: A1 A2 <: B2

A1 → A2 <: B1 → B2
Sub-arr

B1 <: A1 A2 <: B2

Trait [A1,A2] <: Trait [B1,B2]
Sub-trait

Γ ` A (Well formedness)

Γ ` A Γ ` B Γ ` A ∗ B
Γ ` A & B

WF-and
Γ ` A Γ ` B
Γ ` Trait [A,B]

WF-trait

Figure 2 Subtyping and well-formedness of SEDEL (excerpt).

We naturally extend the disjointness rules in Fi to cover trait types. We refer to their
paper [7] for further explanation. Here we discuss the rules related with traits. Rule D-trait
says that as long as the functionalities that two traits provide are disjoint, the two trait
types are disjoint. Rules D-traitArr1 and D-traitArr2 deal with situations where one
of the two types is a function type. At first glance, these two look strange because a trait
type is different from a function type, and they ought to be disjoint as an axiom. The reason
is that SEDEL has an elaboration semantics, and as we will see, trait types are translated
to function types. In order to ensure the elaboration is type-safe, we have to have special
treatment for trait and function types. In principle, if SEDEL has its own semantics, then
trait types are always disjoint to function types. The axiom rules of the form A ∗ax B take
care of two types with different language constructs.

Typing Traits. The typing rules of trait related constructs are shown in Fig. 4. The full set
of rules can be found in the appendix. The reader is advised to ignore the highlighted parts
for now. SEDEL employs two modes: the inference mode (⇒) and the checking mode (⇐).
The inference judgment Γ ` E ⇒ A says that we can synthesize a type A for expression E in
the context Γ. The checking judgment Γ ` E ⇐ A checks E against A in the context Γ. One
representative of inference rules is

Γ ` E1 ⇒ A e1 Γ ` E2 ⇒ B  e2 Γ ` A ∗ B
Γ ` E1 , , E2 ⇒ A & B  e1 , , e2

Inf-merge

which says that a merge of two expressions is valid only if their types are disjoint. This is
the underlying mechanism for conflict detection. One representative of checking rules is

Γ ` E ⇒ A e A <: B Γ ` B
Γ ` E ⇐ B  e

Chk-sub

where subtyping is used to coerce expressions of one type to another.
To type-check a trait (rule Inf-trait) we first type-check if its inherited traits Ei are

valid traits. Note that each trait Ei can possibly refer to self. Methods must all be well-typed
in the usual sense. Apart from these, we have several side-conditions to make sure traits
are well-behaved. The well-formedness judgment Γ ` C1 & .. & Cn & C ensures that we do
not have conflicting methods (in inherited traits and the body). The subtyping judgments
B <: Bi ensure that the self parameter satisfies the requirements imposed by each inherited
trait. Finally the subtyping judgment C1 & .. & Cn & C <: A sanity-checks that the assigned
type A is compatible.
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Γ ` A ∗ B (Disjointness)

D-top

Γ ` > ∗A

D-topSym

Γ ` A ∗ >

D-var
α ∗A ∈ Γ A <: B

Γ ` α ∗ B

D-varSym
α ∗A ∈ Γ A <: B

Γ ` B ∗ α

D-forall
Γ, α ∗A1 & A2 ` B ∗ C

Γ ` ∀ (α ∗A1).B ∗ ∀ (α ∗A2).C

D-rec
Γ ` A ∗ B

Γ ` {l : A} ∗ {l : B}

D-recn
l1 6= l2

Γ ` {l1 : A} ∗ {l2 : B}

D-arrow
Γ ` A2 ∗ B2

Γ ` A1 → A2 ∗ B1 → B2

D-andL
Γ ` A1 ∗ B Γ ` A2 ∗ B

Γ ` A1 & A2 ∗ B

D-andR
Γ ` A ∗ B1 Γ ` A ∗ B2

Γ ` A ∗ B1 & B2

D-trait
Γ ` A2 ∗ B2

Γ ` Trait [A1,A2] ∗Trait [B1,B2]

D-traitArr1
Γ ` A2 ∗ B2

Γ ` Trait [A1,A2] ∗ B1 → B2

D-traitArr2
Γ ` A2 ∗ B2

Γ ` A1 → A2 ∗Trait [B1,B2]

D-ax
A ∗ax B

Γ ` A ∗ B

A ∗ax B (Disjointness axiom)

Dax-intTrait

Int ∗ax Trait [A1,A2]

Dax-traitForall

Trait [A1,A2] ∗ax ∀ (α ∗ B1).B2

Dax-traitRec

Trait [A1,A2] ∗ax {l : B}

Figure 3 Disjointness rules of SEDEL (excerpt).

Trait instantiation (rule Inf-new) requires that each instantiated trait is valid. There are
also several side-conditions, which serve the same purposes as in rule Inf-trait. Rule Inf-
forward says that the first operand E1 of the forwarding operator must be a trait. Moreover,
the type of the second operand E2 must satisfy the requirement of E1.

Treatments of Exclusion, Super and Override. One may have noticed that in Fig. 1 we did
not include the exclusion operator in the core SEDEL syntax, neither do super and override
appear. The reason is that in principle all uses of the exclusion operator can be replaced
by type annotations. For example to exclude a bar field from {foo = a, bar = b, baz = c},
all we need is to annotate the record with type {foo : A, baz : C} (suppose a has type A,
etc). By rule Chk-sub, the resulting record is guaranteed to contain no bar field. In the
same vein, the use of override can be explained using the exclusion operator. The super
keyword is internally a variable pointing to the inherits clause (its typing rule is similar
to rule inf-trait and can be found in the appendix). We omit all of these features in
the meta-theoretic study in order to focus our attention on the essence of first-class traits.
However in practice, this is rather inconvenient as we need to write down all types we wish
to retain rather than the one to exclude. So in our implementation we offer all of them.

Elaboration. The operational semantics of SEDEL is given by means of a type-directed
translation into Fi extended with (lazy) recursive let bindings. This extension is standard and
type-safe. The syntax of Fi is shown in Fig. 5. Let us go back to Fig. 4, now focusing on the
highlighted parts, which denote the elaborated Fi terms. Most of them are straightforward
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Γ ` E ⇒ A  e (Infer)

Inf-trait
Γ, self : B ` Ei ⇒ Trait [Bi ,Ci ]  ei

i∈1..n
Γ, self : B ` { lj = E′

j
j∈1..m } ⇒ C  e

B <: Bi
i∈1..n Γ ` C1 & .. & Cn & C C1 & .. & Cn & C <: A

Γ ` trait [self : B] inherits Ei
i∈1..n { lj = E′

j
j∈1..m } : A ⇒ Trait [B,A]  λ(self : |B|). ((ei self) i∈1..n) , , e

Inf-forward
Γ ` E1 ⇒ Trait [A,B]  e1 Γ ` E2 ⇐ A  e2

Γ ` E1^E2 ⇒ B  e1 e2

Inf-new
Γ ` Ei ⇒ Trait [Ai ,Bi ]  ei

i∈1..n
A <: Ai

i∈1..n Γ ` B1 & .. & Bn B1 & .. & Bn <: A

Γ ` new [A]( Ei
i∈1..n ) ⇒ A  letrec self : |A| = (ei self) i∈1..n

in self

Figure 4 Typing of SEDEL (excerpt).

Types τ, σ ::= > | Int | τ → σ | τ &σ | {l : τ} | α | ∀ (α ∗ τ). σ
Expressions e ::= > | i | x | λx. e | e1 e2 | Λ (α ∗ τ). e | e τ | e1 , , e2 | e : τ

| {l = e} | e. l | letrec x : τ = e1 in e2

Figure 5 Syntax of Fi with let bindings.

translations and are thus omitted. We explain the most involved rules regarding traits.
In rule Inf-trait, a trait is translated into a lambda abstraction with self as the formal
parameter. In essence a trait corresponds to what Cook and Palsberg [19] call a generator.
The translations of the inherited traits (i.e., ei) are each applied to self and then merged
with the translation of the trait body e. Now it is clear why we require B (the type of self)
to be a subtype of each Bi (the requirement of each inherited trait). Note that we abuse the
bar notation here with the intention that (ei self)

i∈1..n
means e1 self , , .. , , en self. Here is

an example of translating the ide_editor trait from Section 2 into plain Fi terms equipped
with definitions (suppose modal_mixin and spell_mixin have been translated accordingly):

The gray parts in rule Inf-new show the translation of trait instantiation. First we
apply every translation (i.e., ei) of the instantiated traits to the self parameter, and then
merge the applications together. The bar notation is interpreted similarly to the translation
in rule Inf-trait. Finally we compute the lazy fixed-point of the resulting merge term,
i.e., self-reference must be updated to refer to the whole composition. Taking the fixed-
point of the traits/generators again follows the denotational inheritance model by Cook and
Palsberg. This is the key to the correct implementation of dynamic dispatching. Finally,
rule Inf-forward translates forwarding expressions to function applications. We show the
translation of the a_editor1 object in Section 3 to illustrate the translation of instantiation:

--END_EDITOR_INST

One remarkable point is that, while Cook and Palsberg work is done in an untyped
setting, here we apply their ideas in a setting with disjoint intersection types and disjoint
polymorphism. Our work shows that disjoint intersection types blend in quite nicely with
Cook and Palsberg’s denotational model of inheritance.

Flattening Property. In the literature of traits [21, 47, 34], a distinguished feature of traits
is the so-called flattening property. This property says that a (non-overridden) method in a
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trait has the same semantics as if it were implemented directly in the class that uses the
trait. It would be interesting to see if our trait model has this property. One problem in
formulating such a property is that flattening is a property that talks about the equivalence
between a flattened class (i.e., a class where all trait methods have been inlined) and a class
that reuses code from traits. Since SEDEL does not have classes, we cannot state exactly
the same property. However, we believe that one way to talk about a similar property for
SEDEL is to have something along the lines of the following example:

I Example 1 (Flattening). Suppose we have m well-typed (i.e, conflict-free) traits trait
t1 {l11 = E11,..},..., trait tm {lm1 = Em1,..}, each with some number of methods, then
new (trait inherits t1 & ... & tm {}) = new (trait {l11 = E11,..,lm1 = Em1,..})

If we elaborate these two expressions, the property boils down to whether two merge terms
(E1 , , E2) , , E2 and E1 , , (E2 , , E3) have the same semantics. As is shown by Bi et al. [13],
merges are associative and commutative, so it is not hard to see that the above two expressions
are semantically equivalent. We leave it as future work to formally state and prove flattening.

4.3 Type Soundness and Coherence
Since the semantics of SEDEL is defined by elaboration into Fi [7] it is easy to show that key
properties of Fi are also guaranteed by SEDEL. In particular, we show that the type-directed
elaboration is type-safe in the sense that well-typed SEDEL expressions are elaborated into
well-typed Fi terms. We also show that the source language is coherent and each valid source
program has a unique (unambiguous) elaboration.

We need a meta-function | · | that translates SEDEL types to Fi types, whose definition is
straightforward. Only the translation of trait types deserves attention:

|Trait [A,B]| = |A| → |B|

That is, trait types are translated to function types. | · | extends naturally to typing contexts.
Now we show several lemmas that are useful in the type-safety proof.

I Lemma 2. If Γ ` A then |Γ| ` |A|.
Proof. By structural induction on the well-formedness judgment. J

I Lemma 3. If A <: B then |A| <: |B|.
Proof. By structural induction on the subtyping judgment. J

I Lemma 4. If Γ ` A ∗ B then |Γ| ` |A| ∗ |B|.
Proof. By structural induction on the disjointness judgment. J

Finally we are in a position to establish the type safety property:

I Theorem 5 (Type-safe translation). We have that:
If Γ ` E ⇒ A e then |Γ| ` e ⇒ |A|.
If Γ ` E ⇐ A e then |Γ| ` e ⇐ |A|.

Proof. By structural induction on the typing judgment. J

I Theorem 6 (Coherence). Each well-typed SEDEL expression has a unique elaboration.
Proof. By examining every elaboration rule, it is easy to see that the elaborated Fi term
in the conclusion is uniquely determined by the elaborated Fi terms in the premises. Then
by the coherence property of Fi, we conclude that each well-typed SEDEL expression has a
unique unambiguous elaboration, thus SEDEL is coherent. J
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5 Case Study: Modularizing Language Components

To further illustrate the applicability of SEDEL, we present a case study using Object
Algebras [39] and Extensible Visitors [38, 52]. Encodings of extensible designs for Object
Algebras and Extensible Visitors have been presented in mainstream languages [38, 52, 39,
41, 44]. However, prior approaches are not entirely satisfactory due to the limitations in
existing mainstream OO languages. In Section 5.1, we show how SEDEL makes those designs
significantly simpler and convenient to use. In particular, SEDEL’s encoding of extensible
visitors gives true ASTs and supports conflict-free Object Algebra combinators, thanks to
first-class traits and disjoint polymorphism. Based on this technique, Section 5.2 gives a
bird-view of several orthogonal features of a small JavaScript-like language from a textbook
on Programming Languages [18], and illustrates how various features can be modularly
developed and composed to assemble a complete language with various operations baked in.
Section 5.3 compares our SEDEL’s implementation with that of the textbook using Haskell
in terms of lines of code.

5.1 Object Algebras and Extensible Visitors in SEDEL

First we give a simple introduction to Object Algebras, a design pattern that can solve the
Expression Problem [54] (EP) in languages like Java. The objective of EP is to modularly
extend a datatype in two dimensions: by adding more cases to the datatype and by adding
new operations for the datatype. Our starting point is the following code:

type ExpAlg[E] = { lit : Int → E, add : E → E → E };
type IEval = { eval : Int };
trait evalAlg => {

lit (x : Int) = { eval = x };
add (x : IEval) (y : IEval) = { eval = x.eval + y.eval }

};

ExpAlg[E] is the generic interface of a simple arithmetic language with two cases, lit for
literals and add for addition. ExpAlg[E] is also called an Object Algebra interface. A concrete
Object Algebra will implement such an interface by instantiating E with a suitable type.
Here we also define one operation IEval, modelled by a single-field record type. A concrete
Object Algebra that implements the evaluation rules is given by a trait evalAlg.

First-Class Object Algebra Values. The actual AST of this simple arithmetic language is
given as an internal visitor [42]:

type Exp = { accept : forall E . ExpAlg[E] → E };

Note that Object Algebras as implemented in languages like Java or Scala do not define
the type Exp because this would make adding new variants very hard. Although extensible
versions of this visitor pattern do exist, they usually require complex types using advanced
features of generics [39, 52]. However, as we will see, this is not a problem in SEDEL. We
can build a value of Exp as follows:

e1 : Exp = { accept E f = f.add (f.lit 2) (f.lit 3) };
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Adding a New Operation. We add another operation IPrint to the language:

type IPrint = { print : String };
trait printAlg => {

lit (x : Int) = { print = x.toString };
add (x : IPrint) (y : IPrint) = {

print = "(" ++ x.print ++ " + " ++ y.print ++ ")"
}

};

This is done by giving another trait printAlg that implements the additional print method.

Adding a New Case. A second dimension for extension is to add another case for negation:

type ExpExtAlg[E] = ExpAlg[E] & { neg : E → E };
trait negEvalAlg inherits evalAlg => {

neg (x : IEval) = { eval = 0 - x.eval }
};
trait negPrintAlg inherits printAlg => {

neg (x : IPrint) = { print= "-" ++ x.print }
};

This is achieved by extending evalAlg and printAlg, implementing missing operations for
negation, respectively. We define the actual AST similarly:

type ExtExp = { accept: forall E. ExpExtAlg[E] → E };

and build a value of -(2 + 3) while reusing e1:

e2 : ExtExp = { accept E f = f.neg (e1.accept E f) };

Relations between Exp and ExpExt. At this stage, it is interesting to point out an inter-
esting subtyping relation between Exp and ExtExp: ExpExt, though being an extension of Exp
is actually a supertype of Exp. As Oliveira [38] observed, these relations are important for
legacy and performance reasons since it means that, a value of type Exp can be automatically
and safely coerced into a value of type ExpExt, allowing some interoperability between new
functionality and legacy code. However, to ensure type-soundness, Scala (or other common
OO languages) forbids any kind of type-refinement on method parameter types. The con-
sequence of this is that in those languages, it is impossible to express that ExtExp is both an
extension and a supertype of Exp.

Dynamic Object Algebra Composition Support. When programming with Object Algeb-
ras, oftentimes it is necessary to pack multiple operations in the same object. For example, in
the simple language we have been developing it can be useful to create an object that supports
both printing and evaluation. Oliveira and Cook [39] addressed this problem by proposing
Object Algebra combinators that combine multiple algebras into one. However, as they noted,
such combinators written in Java are difficult to use in practice, and they require significant
amounts of boilerplate. Improved variants of Object Algebra combinators have been encoded
in Scala using intersection types and an encoding of the merge construct [41, 44]. However,
the Scala encoding of the merge construct is quite complex as it relies on low-level type-
unsafe programming features such as dynamic proxies, reflection or other meta-programming
techniques. In SEDEL, the combination of first-class traits, dynamic inheritance and disjoint
polymorphism allows type-safe, coherent and boilerplate-free composition of Object Algebras.

combine A [B * A] (f : Trait[ExpExtAlg[A]]) (g : Trait[ExpExtAlg[B]]) =
trait inherits f & g => {};
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Types τ ::= int | bool
Expressions e ::= i | e1 + e2 | e1 − e2 | e1 × e2 | e1 ÷ e2 natF

| B | if e1 then e2 else e3 boolF
| e1 == e2 | e1 < e2 compF
| e1 && e2 | e1 || e2 logicF
| x | var x = e1; e2 varF
| e1 e2 funcF

Programs pgm ::= decl1 . . . decln e funcF
Functions decl ::= function f (x : τ){e} funcF
Values v ::= i | B

Figure 6 Mini-JS expressions, values, and types.

That is it. None of the boilerplate in other approaches [39], or type-unsafe meta-programming
techniques of other approaches [41, 44] are needed! Two points are worth noting: (1) combine
relies on dynamic inheritance. Notice how combine inherits two traits f and g, for which their
implementations are unknown statically; (2) the disjointness constraint (B * A) is crucial to
ensure two Object Algebras (f and g) are conflict-free when being composed.

To conclude, let us see combine in action. We combine negEvalAlg and negPrintAlg:

combinedAlg = combine IEval IPrint negEvalAlg negPrintAlg;

The combined algebra combineAlg is useful to avoid multiple interpretations of the same AST
when running multiple operations. For example, we can create an object o that supports
both evaluation and printing in one go:

o = e2.accept (IEval & IPrint) (new[ExpExtAlg[IEval & IPrint]] combinedAlg);
main = o.print ++ " = " ++ o.eval.toString -- "-(2.0 + 3.0) = -5.0"

5.2 Case Study Overview
Now we are ready to see how the same technique scales to modularize different language
features. A feature is an increment in program functionality [56, 31]. Figure 6 presents the
syntax of the expressions, values and types provided by the features; each line is annotated
with the corresponding feature name. Starting from a simple arithmetic language, we
gradually introduce new features and combine them with some of the existing features to
form various languages. Below we briefly explain what constitutes each feature:

natF and boolF contain, among others, literals, additions and conditional expressions.
compF and logicF introduce comparisons between numbers and logical connectives.
varF introduces local variables and variable declarations.
funcF introduces top-level functions and function calls.

Besides, each feature is packed with 3 operations: evaluator, pretty printer and type checker.
Having the feature set, we can synthesize different languages by selecting one or more

operations, and one or more data variants, as shown in Fig. 7. For example arith is a simple
language of arithmetic expressions, assembled from natF , boolF and compF . On top of that,
we also define an evaluator, a pretty printer and a type checker. Note that for some languages
(e.g., simplenat), since they have only one kind of value, we only define an evaluator and
a pretty printer. We thus obtain 12 languages and 30 operations in total. The complete
language mini-JS contains all the features and supports all the operations. The reader can
refer to our supplementary material for the source code of the case study.
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Language Operations Data variants
eval print check natF boolF compF logicF varF funcF

simplenat 3 3 3

simplebool 3 3 3

natbool 3 3 3 3 3

varbool 3 3 3 3

varnat 3 3 3 3

simplelogic 3 3 3 3

varlogic 3 3 3 3 3

arith 3 3 3 3 3 3

arithlogic 3 3 3 3 3 3 3

vararith 3 3 3 3 3 3 3

vararithlogic 3 3 3 3 3 3 3 3

mini-JS 3 3 3 3 3 3 3 3 3

Figure 7 Overview of the languages assembled.

5.3 Evaluation
To evaluate SEDEL’s implementation of the case study, Figure 8 compares the number of
source lines of code (SLOC, lines of code without counting empty lines and comments) for
SEDEL’s modular implementation with the vanilla non-modular AST-based implementations
in Haskell. The Haskell implementations are just straightforward AST interpreters, which
duplicate code across the multiple language components.

Since SEDEL is a new language, we had to write various code that is provided in Haskell
by the standard library, so they are not counted for fairness of comparison. In the left part,
for each feature, we count the lines of the algebra interface (number beside the feature name),
and the algebras for the operations. In the right part, for each language, we count the lines
of ASTs, and those to combine previously defined operations. For example, here is the code
that is needed to make the arith language.

type ArithAlg[E] = NatBoolAlg[E] & CompAlg[E]; -- Object Algebra interface
type Arith = { accept : forall E. ArithAlg[E] → E }; -- AST
evalArith (e : Arith) : IEval = -- Evaluator

e.accept IEval (new[ArithAlg[IEval]] evalNatAlg & evalBoolAlg & evalCompAlg);
ppArith (e : Arith) : IPrint = -- Pretty printer

e.accept IPrint (new[ArithAlg[IPrint]] ppNatAlg & ppBoolAlg & ppCompAlg);
tcArith (e : Arith) = -- Type checker

e.accept ITC (new[ArithAlg[ITC]] tcNatAlg & tcBoolAlg & tcCompAlg);

We only need 8 lines in total: 2 lines for the AST, and 6 lines to combine the operations.
Therefore, the total SLOC of SEDEL’s implementation is the sum of all the lines in

the feature and language parts (237 SLOC of all features plus 94 SLOC of ASTs and
operations). Although SEDEL is considerably more verbose than a functional language like
Haskell, SEDEL’s modular implementation for 12 languages and 30 operations in total reduces
approximately 60% in terms of SLOC. The reason is that, the more frequently a feature is
reused by other languages directly or indirectly, the more reduction we see in the total SLOC.
For example, natF is used across many languages. Even though simplenat itself alone has
more SLOC (40 = 7 + 23 + 7 + 3) than that of Haskell (which has 33), we still get a huge
gain when implementing other languages.
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Feature eval print check Lang name SEDEL Haskell % Reduced
natF(7) 23 7 39 simplenat 3 33 91%
boolF(4) 9 4 17 simplebool 3 16 81%

compF(4) 12 4 20 natbool 5 74 93%
logicF(4) 12 4 20 varbool 4 24 83%

varF(4) 7 4 7 varnat 4 41 90%
funcF(3) 10 3 9 simplelogic 4 28 86%

varlogic 6 36 83%
arith 8 94 91%
arithlogic 8 114 93%
vararith 8 107 93%
vararithlogic 8 127 94%
mini-JS 33 149 78%

Total 237 331 843 61%

Figure 8 SLOC statistics: SEDEL implementation vs vanilla AST implementation.

Finally, we acknowledge the limitation of our case study in that SLOC is just one metric
and we have not measured any other metrics. Nevertheless we believe that the case study is
already non-trivial in that we need to solve EP. Note that Scala traits alone are not sufficient
on their own to solve EP. While there are solutions to EP in both Haskell and Scala, they
introduce significant complexity, as explained in Section 5.1.

6 Related Work

Typed First-Class Classes/Mixins/Traits. First-class classes have been used in Racket [26],
along with mixin support, and have shown great practical value. For example, DrRacket
IDE [24] makes extensive use of layered combinations of mixins to implement text editing
features. The topic of first-class classes with static typing has been explored by Takikawa
et al. [51] in Typed Racket. They designed a gradual type system that supports first-class
classes. Of particular interest is their use of row polymorphism [55] to type mixins. As
with our use of disjoint polymorphism, row polymorphism can express constraints on the
presence or absence of members. Unlike disjoint polymorphism, row polymorphism prohibits
forgetting class members. For example, in SEDEL we can write:

foo [A * {bar : String}] (t : Trait[{bar : String} & A]) : Trait[A] = t;

where foo drops bar from its argument trait t, which is impossible to express in Typed Racket.
Also as we pointed out in Section 3.6, row polymorphism alone cannot express the merge
function that is able to compose objects of statically unknown types. In this sense, we argue
disjoint polymorphism is more powerful than row polymorphism in terms of expressivity. It
would be interesting to investigate the relationship between disjoint polymorphism and row
polymorphism. We leave it as future work.

More recently, Lee et al. [30] proposed a model for typed first-class classes based on
tagged objects. Like our development, the semantics of their source language is defined by a
translation into a target language. One notable difference to SEDEL is that they require the
use of a variable rather than an expression in the extends clause, whereas we do not have this
restriction. In their source language, subclasses define subtypes, which limits its applicability
to extensible designs. Also their target calculus is significantly more complex than ours due
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to the use of dependent function types and dependent sum types. As they admitted, they
omit inheritance in their formalization.

Racket also supports a dynamically-typed model of first-class traits [26]. However, unlike
Racket’s first-class classes and mixins, there’s no type system supporting the use of first-class
traits. A key difficulty is statically detecting conflicts. As far as we know, SEDEL is the first
design for typed first-class traits.

Mixin-Based Inheritance. Bracha and Cook’s seminal paper [16] extends Modula-3 with
mixins. Since then, many mixin-based models have been proposed [27, 14, 8]. Mixin-based
inheritance requires that mixins are composed linearly, and as such, conflicts are resolved
implicitly. In comparison, the trait model in SEDEL requires conflicts to be resolved explicitly.
We want to emphasize that conflict detection is essential in expressing composition operators
for Object Algebras, without running into ambiguities. Bracha’s Jigsaw [15] formalized
mixin composition, along with a rich trait algebra including merge, restrict, select, project,
overriding and rename operators. Lagorio et al. [29] proposed FJig that reformulates Jigsaw
constructs in a Java-like setting. Allen et al. [6] described how to add first-class generic types
– including mixins – to OO languages with nominal typing. As such, classes and mixins,
though they enjoy static typing, are still second-class constructs, and thus their system
cannot express dynamic inheritance. Bessai et al. [9] showed how to type classes and mixins
with intersection types and Bracha-Cook’s merge operator [16].

Trait-Based Inheritance. Traits were proposed by Schärli et al. [47, 21] as a mechanism
for fine-grained code reuse to overcome many limitations of class-based inheritance. The
original proposal of traits were implemented in the dynamically-typed class-based language
Squeak/Smalltalk. Since then various formalizations of traits in a Java-like (statically-
typed) setting have been proposed [25, 46, 50, 34]. In most of the above proposals, trait
composition and class-based inheritance live together. SEDEL, in the spirit of pure trait-based
programming languages [12, 11], embraces traits as the sole mechanism for code reuse. The
deviation from traditional class-based inheritance is not only because of its simplicity, but
also because we need a very dynamic form of inheritance.

Languages with More Advanced Forms of Inheritance. Self [53] is a dynamically-typed,
prototype-based language with a simple and uniform object model. Self’s inheritance model
is typical of what we call mutable inheritance, because an object’s parent slot may be assigned
new values at runtime. Mutable inheritance is rather unstructured, and oftentimes access
to any clashing methods will generate a “messageAmbiguous” error at runtime. Although
SEDEL’s dynamic inheritance is not as powerful as mutable inheritance, its static type system
can guarantee that no such errors occur at runtime. Eiffel [33] supports a sophisticated
class-based multiple inheritance with deep renaming, exclusion and repeated inheritance. Of
particular interest is that in Eiffel, name collisions are considered programming errors, and
ambiguities must be resolved explicitly by the programmer (by means of renaming). In this
regard, SEDEL is quite like Eiffel. However, the type system in SEDEL is more lenient in
that two identically named methods with different signatures can coexist. Grace [35, 28]
is an object-based language designed for education, where objects are created by object
constructors. Since Grace has mutable fields, it has to consider many concerns when it
comes to inheritance, resulting in a rather complex inheritance mechanism with various
restrictions. Since SEDEL is pure, a relatively simple encoding of traits with late binding
of self suffices for our applications. Grace’s support for multiple inheritance is based on
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so-called instantiable traits. We believe that there is plenty to be learned from Grace’s
design of traits if we want to extend our trait model with features such as mutable state.
MetaFJig [48] (an extension of FJig) supports dynamic trait replacement [50, 10, 21], a
feature for changing the behavior of an object at runtime by replacing one trait for another.

Module Systems. In parallel to OOP, the ML module system originally proposed by
MacQueen [32] also offers powerful support for flexible program construction, data abstraction
and code reuse. Mixin modules in the Jigsaw framework [17] provides a suite of operators for
adapting and combining modules. The MixML [45] module system incorporates mixin module
composition, while retaining the full expressive powerful of ML modules. Module systems
usually put more emphasis on supporting type abstraction. Support for type abstraction
adds considerable complexity, which is not needed in SEDEL. SEDEL is focused on OOP and
supports, among others, method overriding, self references and dynamic dispatching, which
(generally speaking) are all missing features in module systems.

Intersection Types, Polymorphism and Merge Construct. There is a large body of work
on intersection types. Here we only talk about work that has direct influences on ours.
Dunfield [22] shows significant expressiveness of type systems with intersection types and
a merge construct. However his calculus lacks coherence. The limitation was addressed by
Oliveira el at. [40], where they introduced the notion of disjointness to ensure coherence. The
combination of intersection types, a merge construct and parametric polymorphism, while
achieving coherence was first studied in the Fi calculus [7]. Fi serves as the target language
of SEDEL. Dynamic inheritance, self-references and abstract methods are all missing from Fi
but, as shown in this paper, they can be encoded using an elaboration that employs ideas
from Cook and Palsberg’s denotational model of inheritance [19].

7 Conclusion

This paper presents SEDEL: the first design for a polymorphic statically-typed language with
first-class traits, supporting dynamic inheritance as well as conventional OO features such
as dynamic dispatching and abstract methods. The paper also shows how high-level source
language constructs can be elaborated into a core record calculus with disjoint polymorphism.
Finally the paper illustrates the applicability of SEDEL by showing greatly improved design
patterns such as Object Algebras and Extensible Visitors, leveraging first-class traits. As
for future work, we are interested to study how first-class traits interacts with features such
as mutable state and recursive types. For mutable state, one immediate issue of supporting
mutation is how it affects the coherence property of Fi, and we foresee major technical
challenges to adjust the previous coherence proof. A more powerful proof method such as
logical relations [13, 5] may be needed.
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