
Consistent Subtyping for All

Ningning Xie Xuan Bi Bruno C. d. S. Oliveira

16 April, 2018

The University of Hong Kong

ESOP 2018, Thessaloniki, Greece

1



Gradual Typing 101

• The key external feature of every gradual type system is the

unknown type ?.

f (x : Int) = x + 2 -- static checking
h (g : ?) = g 1 -- dynamic checking
h f

• Central to gradual typing is type consistency ∼, which relaxes

type equality: ? ∼ Int, ?→ Int ∼ Int→ ?, . . .

• Dynamic semantics is defined by type-directed translation to

an internal language with runtime casts:

(〈? ↪→ ?→ ?〉g) (〈Int ↪→ ?〉1)
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Many Successes

, But...

Gradual typing has seen great popularity both in academia and

industry. Over the years, there emerge many gradual type

disciplines:

• Subtyping

• Parametric Polymorphism

• Type inference

• Security Typing

• Effects

• . . .

R As type systems get more complex, it becomes more

difficult to adapt notions of gradual typing.

[Garcia et al., 2016]
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Problem

• Can we design a gradual type system with implicit higher-rank

polymorphism?

• State-of-art techniques are inadequate.

4



Problem

• Can we design a gradual type system with implicit higher-rank

polymorphism?

• State-of-art techniques are inadequate.

4



Why It Is interesting

• Haskell supports implicit higher-rank polymorphism, but some

“safe” programs are rejected:

foo :: ([Int], [Char])
foo = let f x = (x [1, 2], x [’a’, ’b’])

in f reverse -- GHC rejects

• If we had gradual typing...

let f (x : ?) = (x [1, 2], x [’a’, ’b’])
in f reverse

• Moving to more precised version still type checks, but with

more static safety guarantee:

let f (x : ∀a. [a] → [a]) = (x [1, 2], x [’a’, ’b’])
in f reverse
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Contributions

• A new specification of consistent subtyping that works for

implicit higher-rank polymorphism

• An easy-to-follow recipe for turning subtyping into consistent

subtyping

• A gradually typed calculus with implicit higher-rank
polymorphism

• Satisfies correctness criteria (formalized in Coq)

• A sound and complete algorithm
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What Is Consistent Subtyping

• Consistent subtyping (.) is the extension of subtyping to

gradual types. [Siek and Taha, 2007]

• A static subtyping relation (<:) over gradual types, with the

key insight that ? is neutral to subtyping (? <: ?)

• An algorithm for consistent subtyping in terms of masking A|B

Definition (Consistent Subtyping à la Siek and Taha)

The following two are equivalent:

1. A . B if and only if A ∼ C and C <: B for some C .

2. A . B if and only if A <: C and C ∼ B for some C .
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Design Principle

R Gradual typing and subtyping are orthogonal and can be

combined in a principled fashion. – Siek and Taha
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Challenge

• Polymorphic types induce a subtyping relation:

∀a. a→ a <: Int→ Int

• Design consistent subtyping that combines 1) consistency 2)

subtyping 3) polymorphism.

R Gradual typing and polymorphism are orthogonal and can

be combined in a principled fashion.1

1Note that here we are mostly concerned with static semantics.
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Problem with Existing Definition



Odersky-Läufer Type System

• The underlying static language is the well-established type

system for higher-rank types. [Odersky and Läufer, 1996]

Types A,B ::= Int | a | A→ B | ∀a.A

Monotypes τ, σ ::= Int | a | τ → σ

Terms e ::= x | n | λx : A. e | λx . e | e1 e2
Contexts Ψ ::= • | Ψ, x : A | Ψ, a
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Subtyping

with Unknown Types

Ψ ` A <: B (Subtyping)

a ∈ Ψ

Ψ ` a <: a Ψ ` Int <: Int

Ψ ` B1 <: A1 Ψ ` A2 <: B2

Ψ ` A1 → A2 <: B1 → B2

Ψ ` τ Ψ ` A[a 7→ τ ] <: B

Ψ ` ∀a.A <: B

Ψ, a ` A <: B

Ψ ` A <: ∀a.B

Ψ ` ? <: ?
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Type Consistency

with Polymorphic Types

A ∼ B (Type Consistency)

A ∼ A A ∼ ? ? ∼ A

A1 ∼ B1 A2 ∼ B2

A1 → A2 ∼ B1 → B2

A ∼ B

∀a.A ∼ ∀a.B

R The simplicity comes from the orthogonality between

consistency and subtyping!
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Bad News

Definition (Consistent Subtyping à la Siek and Taha)

The following two are equivalent:

1. A . B if and only if A ∼ C and C <: B for some C .

2. A . B if and only if A <: C and C ∼ B for some C .

R Equivalence is broken in the polymorphic setting!
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Revisiting Consistent Subtyping



Consistent Subtyping vs. Subtyping

• Subtyping validates the subsumption principle

, so should

consistent subtyping

Ψ ` e : A A <: B

Ψ ` e : B

• Subtyping is transitive, but consistent subtyping is not
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Observations

Observation (I)

If A <: B and B . C , then A . C .

Observation (II)

If C . B and B <: A, then C . A.

T1 C

B T2

A

<:

<:<:

∼

∼

.

.
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Consistent Subtyping, the Specification

Definition (Generalized Consistent Subtyping)

Ψ ` A . B
def
= Ψ ` A <: A′ , A′ ∼ B ′ and Ψ ` B ′ <: B for some A′ and

B ′.

B

A′ B ′

A

<:

<:

∼ .
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Consistent Subtyping, the Specification

Definition (Generalized Consistent Subtyping)

Ψ ` A . B
def
= Ψ ` A <: A′ , A′ ∼ B ′ and Ψ ` B ′ <: B for some A′ and

B ′.

(((?→ Int)→ Int)→ Bool)→ (Int→ ?)

A B

(((∀a.a→ Int)→ Int)→ Bool)→ (∀a.a)

<:

<:

∼

A = ((∀a.a→ Int)→ Int)→ Bool)→ (Int→ Int)

B = ((∀a.?→ Int)→ Int)→ Bool)→ (Int→ ?)
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Non-Determinism

Definition (Generalized Consistent Subtyping)

Ψ ` A . B
def
= Ψ ` A <: A′ , A′ ∼ B ′ and Ψ ` B ′ <: B for some A′ and

B ′.

Two sources of non-determinism:

1. Two intermediate types A′ and B ′

R We can derive a syntax-directed inductive definition

without resorting to subtyping or consistency at all!

2. Guessing monotypes

Ψ ` τ Ψ ` A[a 7→ τ ] <: B

Ψ ` ∀a.A <: B
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Consistent Subtyping Without Existentials

Notice Ψ ` ? . A always holds (? <: ? ∼ A <: A), and vise versa

(Ψ ` A . ?)

1. Replace <: with .

2. Replace Ψ ` ? . ? with Ψ ` ? . A and Ψ ` A . ?
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Consistent Subtyping Without Existentials: First Step

1. Replace <: with .

2. Replace Ψ ` ? . ? with Ψ ` ? . A and Ψ ` A . ?

Ψ ` A <: B (Subtyping)

a ∈ Ψ

Ψ ` a <: a Ψ ` Int <: Int

Ψ ` B1 <: A1 Ψ ` A2 <: B2

Ψ ` A1 → A2 <: B1 → B2

Ψ ` τ Ψ ` A[a 7→ τ ] <: B

Ψ ` ∀a.A <: B

Ψ, a ` A <: B

Ψ ` A <: ∀a.B

Ψ ` ? <: ?

18



Consistent Subtyping Without Existentials: First Step

1. Replace <: with .

2. Replace Ψ ` ? . ? with Ψ ` ? . A and Ψ ` A . ?

Ψ ` A . B (Consistent Subtyping, not yet)

a ∈ Ψ

Ψ ` a . a Ψ ` Int . Int

Ψ ` B1 . A1 Ψ ` A2 . B2

Ψ ` A1 → A2 . B1 → B2

Ψ ` τ Ψ ` A[a 7→ τ ] . B

Ψ ` ∀a.A . B

Ψ, a ` A . B

Ψ ` A . ∀a.B

Ψ ` ? . ?

18



Consistent Subtyping Without Existentials: Second Step
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Definition Meets Specification

Theorem

Ψ ` A . B iff Ψ ` A <: A′, A′ ∼ B ′ and Ψ ` B ′ <: B for some

A′ and B ′.
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Declarative Type System



Type System

Ψ ` e : A (Typing, selected rules)

Ψ, a ` e : A

Ψ ` e : ∀a.A
u-gen

Ψ, x : A ` e : B

Ψ ` λx : A. e : A→ B
u-lamann

Ψ, x : τ ` e : B

Ψ ` λx . e : τ → B
u-lam

Ψ ` e1 : A Ψ ` A . A1 → A2

Ψ ` e2 : A3 Ψ ` A3 . A1

Ψ ` e1 e2 : A2

u-app
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Type System

Ψ ` e1 : A Ψ ` A . A1 → A2

Ψ ` e2 : A3 Ψ ` A3 . A1

Ψ ` e1 e2 : A2

u-app

Ψ ` A . A1 → A2 (Matching)

Ψ ` τ Ψ ` A[a 7→ τ ] . A1 → A2

Ψ ` ∀a.A . A1 → A2

m-forall

Ψ ` A1 → A2 . A1 → A2

m-arr
Ψ ` ? . ?→ ?

m-unknown
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Dynamic Semantics

• Type-directed translation into an intermediate language with

runtime casts (Ψ ` e : A s)

• We translate to the Polymorphic Blame Calculus (PBC)

[Ahmed et al., 2011]

PBC terms2 s ::= x | n | λx : A. s | Λa. s | s1 s2 | 〈A ↪→ B〉s

2Only a subst of PBC terms are used
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Correctness Criteria

• Conservative extension: for all static Ψ, e, and A,
• if Ψ `OL e : A, then there exists B, such that Ψ ` e : B, and

Ψ ` B <: A.

• if Ψ ` e : A, then Ψ `OL e : A

• Monotonicity w.r.t. precision: for all Ψ, e, e ′,A, if

Ψ ` e : A, and e ′ v e, then Ψ ` e ′ : B, and B v A for some

B.

• Type Preservation of cast insertion: for all Ψ, e,A, if

Ψ ` e : A, then Ψ ` e : A s, and Ψ `B s : A for some s.

• Monotonicity of cast insertion: for all Ψ, e1, e2, s1, s2,A, if

Ψ ` e1 : A s1, and Ψ ` e2 : A s2, and e1 v e2, then

Ψ p Ψ ` s1 vB s2.

R Proved in Coq!
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Recap

Gradual Language with

Implict Higher-Rank 

Polymorphism

Static Language

Cast Language

PBC
<translate>

Criteria

<Gradualize>
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More in the Paper

• A bidirectional account of the algorithmic type system

(inspired by [Dunfield and Krishnaswami, 2013])

• Extension to top types

• Discussion and comparison with other approaches (AGT

[Garcia et al., 2016], Directed Consistency [Jafery and

Dunfield, 2017])

• Discussion of dynamic guarantee
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Future Work

• Fix the issue with dynamic guarantee (partially)

• More features: mutable state, fancy types, etc.
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Backup Slides



Dynamic Guarantee

• Changes to the annotations of a gradually typed program

should not change the dynamic behaviour of the program.

• The declarative system breaks it...

(λf : ∀a. a→ Int. λx : Int. f x) (λx . 1) 3 ⇓ 3

(λf : ∀a. a→ Int. λx : ?. f x) (λx . 1) 3 ⇓ ?

• A common problem in gradual type inference, see [Garcia and

Cimini 2015]. Static and gradual type parameters may help.

• A more sophisticated term precision is needed in PBC.

[Igarashi et al. 2017]


	Problem with Existing Definition
	Revisiting Consistent Subtyping
	Declarative Type System
	References
	Appendix

