
Consistent Subtyping for All

Ningning Xie Xuan Bi Bruno C. d. S. Oliveira

16 April, 2018

The University of Hong Kong

ESOP 2018, Thessaloniki, Greece

1

Gradual Typing 101

• The key external feature of every gradual type system is the

unknown type ?.

f (x : Int) = x + 2 -- static checking
h (g : ?) = g 1 -- dynamic checking
h f

• Central to gradual typing is type consistency ∼, which relaxes

type equality: ? ∼ Int, ?→ Int ∼ Int→ ?, . . .

• Dynamic semantics is defined by type-directed translation to

an internal language with runtime casts:

(〈? ↪→ ?→ ?〉g) (〈Int ↪→ ?〉1)

2

Many Successes

, But...

Gradual typing has seen great popularity both in academia and

industry. Over the years, there emerge many gradual type

disciplines:

• Subtyping

• Parametric Polymorphism

• Type inference

• Security Typing

• Effects

• . . .

R As type systems get more complex, it becomes more

difficult to adapt notions of gradual typing.

[Garcia et al., 2016]

3

Many Successes, But...

Gradual typing has seen great popularity both in academia and

industry. Over the years, there emerge many gradual type

disciplines:

• Subtyping

• Parametric Polymorphism

• Type inference

• Security Typing

• Effects

• . . .

R As type systems get more complex, it becomes more

difficult to adapt notions of gradual typing.

[Garcia et al., 2016]

3

Problem

• Can we design a gradual type system with implicit higher-rank

polymorphism?

• State-of-art techniques are inadequate.

4

Problem

• Can we design a gradual type system with implicit higher-rank

polymorphism?

• State-of-art techniques are inadequate.

4

Why It Is interesting

• Haskell supports implicit higher-rank polymorphism, but some

“safe” programs are rejected:

foo :: ([Int], [Char])
foo = let f x = (x [1, 2], x [’a’, ’b’])

in f reverse -- GHC rejects

• If we had gradual typing...

let f (x : ?) = (x [1, 2], x [’a’, ’b’])
in f reverse

• Moving to more precised version still type checks, but with

more static safety guarantee:

let f (x : ∀a. [a] → [a]) = (x [1, 2], x [’a’, ’b’])
in f reverse

5

Why It Is interesting

• Haskell supports implicit higher-rank polymorphism, but some

“safe” programs are rejected:

foo :: ([Int], [Char])
foo = let f x = (x [1, 2], x [’a’, ’b’])

in f reverse -- GHC rejects

• If we had gradual typing...

let f (x : ?) = (x [1, 2], x [’a’, ’b’])
in f reverse

• Moving to more precised version still type checks, but with

more static safety guarantee:

let f (x : ∀a. [a] → [a]) = (x [1, 2], x [’a’, ’b’])
in f reverse

5

Why It Is interesting

• Haskell supports implicit higher-rank polymorphism, but some

“safe” programs are rejected:

foo :: ([Int], [Char])
foo = let f x = (x [1, 2], x [’a’, ’b’])

in f reverse -- GHC rejects

• If we had gradual typing...

let f (x : ?) = (x [1, 2], x [’a’, ’b’])
in f reverse

• Moving to more precised version still type checks, but with

more static safety guarantee:

let f (x : ∀a. [a] → [a]) = (x [1, 2], x [’a’, ’b’])
in f reverse

5

Contributions

• A new specification of consistent subtyping that works for

implicit higher-rank polymorphism

• An easy-to-follow recipe for turning subtyping into consistent

subtyping

• A gradually typed calculus with implicit higher-rank
polymorphism

• Satisfies correctness criteria (formalized in Coq)

• A sound and complete algorithm

6

What Is Consistent Subtyping

• Consistent subtyping (.) is the extension of subtyping to

gradual types. [Siek and Taha, 2007]

• A static subtyping relation (<:) over gradual types, with the

key insight that ? is neutral to subtyping (? <: ?)

• An algorithm for consistent subtyping in terms of masking A|B

Definition (Consistent Subtyping à la Siek and Taha)

The following two are equivalent:

1. A . B if and only if A ∼ C and C <: B for some C .

2. A . B if and only if A <: C and C ∼ B for some C .

7

What Is Consistent Subtyping

• Consistent subtyping (.) is the extension of subtyping to

gradual types. [Siek and Taha, 2007]

• A static subtyping relation (<:) over gradual types, with the

key insight that ? is neutral to subtyping (? <: ?)

• An algorithm for consistent subtyping in terms of masking A|B

Definition (Consistent Subtyping à la Siek and Taha)

The following two are equivalent:

1. A . B if and only if A ∼ C and C <: B for some C .

2. A . B if and only if A <: C and C ∼ B for some C .

7

What Is Consistent Subtyping

• Consistent subtyping (.) is the extension of subtyping to

gradual types. [Siek and Taha, 2007]

• A static subtyping relation (<:) over gradual types, with the

key insight that ? is neutral to subtyping (? <: ?)

• An algorithm for consistent subtyping in terms of masking A|B

Definition (Consistent Subtyping à la Siek and Taha)

The following two are equivalent:

1. A . B if and only if A ∼ C and C <: B for some C .

2. A . B if and only if A <: C and C ∼ B for some C .

7

What Is Consistent Subtyping

• Consistent subtyping (.) is the extension of subtyping to

gradual types. [Siek and Taha, 2007]

• A static subtyping relation (<:) over gradual types, with the

key insight that ? is neutral to subtyping (? <: ?)

• An algorithm for consistent subtyping in terms of masking A|B

Definition (Consistent Subtyping à la Siek and Taha)

The following two are equivalent:

1. A . B if and only if A ∼ C and C <: B for some C .

2. A . B if and only if A <: C and C ∼ B for some C .

7

Design Principle

R Gradual typing and subtyping are orthogonal and can be

combined in a principled fashion. – Siek and Taha

8

Challenge

• Polymorphic types induce a subtyping relation:

∀a. a→ a <: Int→ Int

• Design consistent subtyping that combines 1) consistency 2)

subtyping 3) polymorphism.

R Gradual typing and polymorphism are orthogonal and can

be combined in a principled fashion.1

1Note that here we are mostly concerned with static semantics.

9

Challenge

• Polymorphic types induce a subtyping relation:

∀a. a→ a <: Int→ Int

• Design consistent subtyping that combines 1) consistency 2)

subtyping 3) polymorphism.

R Gradual typing and polymorphism are orthogonal and can

be combined in a principled fashion.1

1Note that here we are mostly concerned with static semantics.

9

Problem with Existing Definition

Odersky-Läufer Type System

• The underlying static language is the well-established type

system for higher-rank types. [Odersky and Läufer, 1996]

Types A,B ::= Int | a | A→ B | ∀a.A

Monotypes τ, σ ::= Int | a | τ → σ

Terms e ::= x | n | λx : A. e | λx . e | e1 e2
Contexts Ψ ::= • | Ψ, x : A | Ψ, a

10

Subtyping

with Unknown Types

Ψ ` A <: B (Subtyping)

a ∈ Ψ

Ψ ` a <: a Ψ ` Int <: Int

Ψ ` B1 <: A1 Ψ ` A2 <: B2

Ψ ` A1 → A2 <: B1 → B2

Ψ ` τ Ψ ` A[a 7→ τ] <: B

Ψ ` ∀a.A <: B

Ψ, a ` A <: B

Ψ ` A <: ∀a.B

Ψ ` ? <: ?

11

Subtyping with Unknown Types

Ψ ` A <: B (Subtyping)

a ∈ Ψ

Ψ ` a <: a Ψ ` Int <: Int

Ψ ` B1 <: A1 Ψ ` A2 <: B2

Ψ ` A1 → A2 <: B1 → B2

Ψ ` τ Ψ ` A[a 7→ τ] <: B

Ψ ` ∀a.A <: B

Ψ, a ` A <: B

Ψ ` A <: ∀a.B

Ψ ` ? <: ?

11

Type Consistency

with Polymorphic Types

A ∼ B (Type Consistency)

A ∼ A A ∼ ? ? ∼ A

A1 ∼ B1 A2 ∼ B2

A1 → A2 ∼ B1 → B2

A ∼ B

∀a.A ∼ ∀a.B

R The simplicity comes from the orthogonality between

consistency and subtyping!

12

Type Consistency with Polymorphic Types

A ∼ B (Type Consistency)

A ∼ A A ∼ ? ? ∼ A

A1 ∼ B1 A2 ∼ B2

A1 → A2 ∼ B1 → B2

A ∼ B

∀a.A ∼ ∀a.B

R The simplicity comes from the orthogonality between

consistency and subtyping!

12

Type Consistency with Polymorphic Types

A ∼ B (Type Consistency)

A ∼ A A ∼ ? ? ∼ A

A1 ∼ B1 A2 ∼ B2

A1 → A2 ∼ B1 → B2

A ∼ B

∀a.A ∼ ∀a.B

R The simplicity comes from the orthogonality between

consistency and subtyping!

12

Bad News

Definition (Consistent Subtyping à la Siek and Taha)

The following two are equivalent:

1. A . B if and only if A ∼ C and C <: B for some C .

2. A . B if and only if A <: C and C ∼ B for some C .

R Equivalence is broken in the polymorphic setting!

13

Bad News

Definition (Consistent Subtyping à la Siek and Taha)

The following two are equivalent:

1. A . B if and only if A ∼ C and C <: B for some C . 3

2. A . B if and only if A <: C and C ∼ B for some C . 7

R Equivalence is broken in the polymorphic setting!

⊥ (?→ Int)→ Int

(∀a.a→ Int)→ Int (∀a.?→ Int)→ Int

<: <:

∼

∼

13

Bad News

Definition (Consistent Subtyping à la Siek and Taha)

The following two are equivalent:

1. A . B if and only if A ∼ C and C <: B for some C . 7

2. A . B if and only if A <: C and C ∼ B for some C . 3

R Equivalence is broken in the polymorphic setting!

Int→ Int Int→ ?

∀a.a ⊥

<: <:

∼

∼

13

Bad News

Definition (Consistent Subtyping à la Siek and Taha)

The following two are equivalent:

1. A . B if and only if A ∼ C and C <: B for some C . 7

2. A . B if and only if A <: C and C ∼ B for some C . 7

R Equivalence is broken in the polymorphic setting!

⊥ (((?→ Int)→ Int) → Bool)→ (Int→ ?)

(((∀a.a→ Int)→ Int) → Bool)→ (∀a.a) ⊥

<:
<:

∼

∼

13

Revisiting Consistent Subtyping

Consistent Subtyping vs. Subtyping

• Subtyping validates the subsumption principle

, so should

consistent subtyping

Ψ ` e : A A <: B

Ψ ` e : B

• Subtyping is transitive, but consistent subtyping is not

14

Consistent Subtyping vs. Subtyping

• Subtyping validates the subsumption principle, so should

consistent subtyping

Ψ ` e : A A . B

Ψ ` e : B

• Subtyping is transitive, but consistent subtyping is not

14

Consistent Subtyping vs. Subtyping

• Subtyping validates the subsumption principle, so should

consistent subtyping

Ψ ` e : A A . B

Ψ ` e : B

• Subtyping is transitive, but consistent subtyping is not

14

Observations

Observation (I)

If A <: B and B . C , then A . C .

Observation (II)

If C . B and B <: A, then C . A.

T1 C

B T2

A

<:

<:<:

∼

∼

.

.

15

Observations

Observation (I)

If A <: B and B . C , then A . C .

Observation (II)

If C . B and B <: A, then C . A.

T1 C

B T2

A

<:

<:<:

∼

∼

.

.

15

Observations

Observation (I)

If A <: B and B . C , then A . C .

Observation (II)

If C . B and B <: A, then C . A.

T1 C

B T2

A

<:

<:<:

∼

∼

.

.

15

Observations

Observation (I)

If A <: B and B . C , then A . C .

Observation (II)

If C . B and B <: A, then C . A.

T1 C

B T2

A

<:

<:<:

∼

∼

.

.

A

T1 B

C T2

<: <:

<:

∼

∼

.

.

15

Observations

Observation (I)

If A <: B and B . C , then A . C .

Observation (II)

If C . B and B <: A, then C . A.

T1 C

B T2

A

<:

<:<:

∼

∼

.

.

A

T1 B

C T2

<: <:

<:

∼

∼

.

.

15

Consistent Subtyping, the Specification

Definition (Generalized Consistent Subtyping)

Ψ ` A . B
def
= Ψ ` A <: A′ , A′ ∼ B ′ and Ψ ` B ′ <: B for some A′ and

B ′.

B

A′ B ′

A

<:

<:

∼ .

16

Consistent Subtyping, the Specification

Definition (Generalized Consistent Subtyping)

Ψ ` A . B
def
= Ψ ` A <: A′ , A′ ∼ B ′ and Ψ ` B ′ <: B for some A′ and

B ′.

(((?→ Int)→ Int)→ Bool)→ (Int→ ?)

A B

(((∀a.a→ Int)→ Int)→ Bool)→ (∀a.a)

<:

<:

∼

A = ((∀a.a→ Int)→ Int)→ Bool)→ (Int→ Int)

B = ((∀a.?→ Int)→ Int)→ Bool)→ (Int→ ?)

16

Non-Determinism

Definition (Generalized Consistent Subtyping)

Ψ ` A . B
def
= Ψ ` A <: A′ , A′ ∼ B ′ and Ψ ` B ′ <: B for some A′ and

B ′.

Two sources of non-determinism:

1. Two intermediate types A′ and B ′

R We can derive a syntax-directed inductive definition

without resorting to subtyping or consistency at all!

2. Guessing monotypes

Ψ ` τ Ψ ` A[a 7→ τ] <: B

Ψ ` ∀a.A <: B

17

Non-Determinism

Definition (Generalized Consistent Subtyping)

Ψ ` A . B
def
= Ψ ` A <: A′ , A′ ∼ B ′ and Ψ ` B ′ <: B for some A′ and

B ′.

Two sources of non-determinism:

1. Two intermediate types A′ and B ′

R We can derive a syntax-directed inductive definition

without resorting to subtyping or consistency at all!

2. Guessing monotypes

Ψ ` τ Ψ ` A[a 7→ τ] <: B

Ψ ` ∀a.A <: B

17

Non-Determinism

Definition (Generalized Consistent Subtyping)

Ψ ` A . B
def
= Ψ ` A <: A′ , A′ ∼ B ′ and Ψ ` B ′ <: B for some A′ and

B ′.

Two sources of non-determinism:

1. Two intermediate types A′ and B ′

R We can derive a syntax-directed inductive definition

without resorting to subtyping or consistency at all!

2. Guessing monotypes

Ψ ` τ Ψ ` A[a 7→ τ] <: B

Ψ ` ∀a.A <: B

17

Consistent Subtyping Without Existentials

Notice Ψ ` ? . A always holds (? <: ? ∼ A <: A), and vise versa

(Ψ ` A . ?)

1. Replace <: with .

2. Replace Ψ ` ? . ? with Ψ ` ? . A and Ψ ` A . ?

18

Consistent Subtyping Without Existentials: First Step

1. Replace <: with .

2. Replace Ψ ` ? . ? with Ψ ` ? . A and Ψ ` A . ?

Ψ ` A <: B (Subtyping)

a ∈ Ψ

Ψ ` a <: a Ψ ` Int <: Int

Ψ ` B1 <: A1 Ψ ` A2 <: B2

Ψ ` A1 → A2 <: B1 → B2

Ψ ` τ Ψ ` A[a 7→ τ] <: B

Ψ ` ∀a.A <: B

Ψ, a ` A <: B

Ψ ` A <: ∀a.B

Ψ ` ? <: ?

18

Consistent Subtyping Without Existentials: First Step

1. Replace <: with .

2. Replace Ψ ` ? . ? with Ψ ` ? . A and Ψ ` A . ?

Ψ ` A . B (Consistent Subtyping, not yet)

a ∈ Ψ

Ψ ` a . a Ψ ` Int . Int

Ψ ` B1 . A1 Ψ ` A2 . B2

Ψ ` A1 → A2 . B1 → B2

Ψ ` τ Ψ ` A[a 7→ τ] . B

Ψ ` ∀a.A . B

Ψ, a ` A . B

Ψ ` A . ∀a.B

Ψ ` ? . ?

18

Consistent Subtyping Without Existentials: Second Step

1. Replace <: with .

2. Replace Ψ ` ? . ? with Ψ ` ? . A and Ψ ` A . ?

Ψ ` A . B (Consistent Subtyping, not yet)

a ∈ Ψ

Ψ ` a . a Ψ ` Int . Int

Ψ ` B1 . A1 Ψ ` A2 . B2

Ψ ` A1 → A2 . B1 → B2

Ψ ` τ Ψ ` A[a 7→ τ] . B

Ψ ` ∀a.A . B

Ψ, a ` A . B

Ψ ` A . ∀a.B

Ψ ` ? . ?

18

Consistent Subtyping Without Existentials: Second Step

1. Replace <: with .

2. Replace Ψ ` ? . ? with Ψ ` ? . A and Ψ ` A . ?

Ψ ` A . B (Consistent Subtyping)

a ∈ Ψ

Ψ ` a . a Ψ ` Int . Int

Ψ ` B1 . A1 Ψ ` A2 . B2

Ψ ` A1 → A2 . B1 → B2

Ψ ` τ Ψ ` A[a 7→ τ] . B

Ψ ` ∀a.A . B

Ψ, a ` A . B

Ψ ` A . ∀a.B

Ψ ` ? . A Ψ ` A . ?

18

Definition Meets Specification

Theorem

Ψ ` A . B iff Ψ ` A <: A′, A′ ∼ B ′ and Ψ ` B ′ <: B for some

A′ and B ′.

19

Declarative Type System

Type System

Ψ ` e : A (Typing, selected rules)

Ψ, a ` e : A

Ψ ` e : ∀a.A
u-gen

Ψ, x : A ` e : B

Ψ ` λx : A. e : A→ B
u-lamann

Ψ, x : τ ` e : B

Ψ ` λx . e : τ → B
u-lam

Ψ ` e1 : A Ψ ` A . A1 → A2

Ψ ` e2 : A3 Ψ ` A3 . A1

Ψ ` e1 e2 : A2

u-app

20

Type System

Ψ ` e1 : A Ψ ` A . A1 → A2

Ψ ` e2 : A3 Ψ ` A3 . A1

Ψ ` e1 e2 : A2

u-app

Ψ ` A . A1 → A2 (Matching)

Ψ ` τ Ψ ` A[a 7→ τ] . A1 → A2

Ψ ` ∀a.A . A1 → A2

m-forall

Ψ ` A1 → A2 . A1 → A2

m-arr
Ψ ` ? . ?→ ?

m-unknown

20

Dynamic Semantics

• Type-directed translation into an intermediate language with

runtime casts (Ψ ` e : A s)

• We translate to the Polymorphic Blame Calculus (PBC)

[Ahmed et al., 2011]

PBC terms2 s ::= x | n | λx : A. s | Λa. s | s1 s2 | 〈A ↪→ B〉s

2Only a subst of PBC terms are used

21

Correctness Criteria

• Conservative extension: for all static Ψ, e, and A,
• if Ψ `OL e : A, then there exists B, such that Ψ ` e : B, and

Ψ ` B <: A.

• if Ψ ` e : A, then Ψ `OL e : A

• Monotonicity w.r.t. precision: for all Ψ, e, e ′,A, if

Ψ ` e : A, and e ′ v e, then Ψ ` e ′ : B, and B v A for some

B.

• Type Preservation of cast insertion: for all Ψ, e,A, if

Ψ ` e : A, then Ψ ` e : A s, and Ψ `B s : A for some s.

• Monotonicity of cast insertion: for all Ψ, e1, e2, s1, s2,A, if

Ψ ` e1 : A s1, and Ψ ` e2 : A s2, and e1 v e2, then

Ψ p Ψ ` s1 vB s2.

R Proved in Coq!

22

Correctness Criteria

• Conservative extension: for all static Ψ, e, and A,
• if Ψ `OL e : A, then there exists B, such that Ψ ` e : B, and

Ψ ` B <: A.

• if Ψ ` e : A, then Ψ `OL e : A

• Monotonicity w.r.t. precision: for all Ψ, e, e ′,A, if

Ψ ` e : A, and e ′ v e, then Ψ ` e ′ : B, and B v A for some

B.

• Type Preservation of cast insertion: for all Ψ, e,A, if

Ψ ` e : A, then Ψ ` e : A s, and Ψ `B s : A for some s.

• Monotonicity of cast insertion: for all Ψ, e1, e2, s1, s2,A, if

Ψ ` e1 : A s1, and Ψ ` e2 : A s2, and e1 v e2, then

Ψ p Ψ ` s1 vB s2.

R Proved in Coq!

22

Recap

Gradual Language with

Implict Higher-Rank

Polymorphism

Static Language

Cast Language

PBC
<translate>

Criteria

<Gradualize>

23

More in the Paper

• A bidirectional account of the algorithmic type system

(inspired by [Dunfield and Krishnaswami, 2013])

• Extension to top types

• Discussion and comparison with other approaches (AGT

[Garcia et al., 2016], Directed Consistency [Jafery and

Dunfield, 2017])

• Discussion of dynamic guarantee

24

Future Work

• Fix the issue with dynamic guarantee (partially)

• More features: mutable state, fancy types, etc.

25

References

A. Ahmed, R. B. Findler, J. G. Siek, and P. Wadler. Blame for all. In POPL,

2011.

J. Dunfield and N. R. Krishnaswami. Complete and easy bidirectional

typechecking for higher-rank polymorphism. In ICFP, 2013.

R. Garcia, A. M. Clark, and É. Tanter. Abstracting gradual typing. In POPL,

2016.

K. A. Jafery and J. Dunfield. Sums of uncertainty: Refinements go gradual. In

POPL, 2017.

M. Odersky and K. Läufer. Putting type annotations to work. In POPL, 1996.

J. G. Siek and W. Taha. Gradual typing for objects. In ECOOP, 2007.

26

Consistent Subtyping for All

Ningning Xie Xuan Bi Bruno C. d. S. Oliveira

16 April, 2018

The University of Hong Kong

ESOP 2018, Thessaloniki, Greece

27

Backup Slides

Dynamic Guarantee

• Changes to the annotations of a gradually typed program

should not change the dynamic behaviour of the program.

• The declarative system breaks it...

(λf : ∀a. a→ Int. λx : Int. f x) (λx . 1) 3 ⇓ 3

(λf : ∀a. a→ Int. λx : ?. f x) (λx . 1) 3 ⇓ ?

• A common problem in gradual type inference, see [Garcia and

Cimini 2015]. Static and gradual type parameters may help.

• A more sophisticated term precision is needed in PBC.

[Igarashi et al. 2017]

	Problem with Existing Definition
	Revisiting Consistent Subtyping
	Declarative Type System
	References
	Appendix

