

Consistent Subtyping for All

Ningning Xie <u>Xuan Bi</u> Bruno C. d. S. Oliveira 16 April, 2018

The University of Hong Kong ESOP 2018, Thessaloniki, Greece

Gradual Typing 101

• The key external feature of every gradual type system is the *unknown type* *.

f (x : Int) = x + 2 -- static checking h (g : \star) = g 1 -- dynamic checking h f

- Central to gradual typing is type consistency ~, which relaxes type equality: ★ ~ Int, ★ → Int ~ Int → ★,...
- Dynamic semantics is defined by type-directed translation to an internal language with runtime casts:

$$(\langle \star \hookrightarrow \star \to \star \rangle g) \ (\langle \mathsf{Int} \hookrightarrow \star \rangle 1)$$

Gradual typing has seen great popularity both in academia and industry. Over the years, there emerge many gradual type disciplines:

- Subtyping
- Parametric Polymorphism
- Type inference
- Security Typing
- Effects
- . . .

Gradual typing has seen great popularity both in academia and industry. Over the years, there emerge many gradual type disciplines:

- Subtyping
- Parametric Polymorphism
- Type inference
- Security Typing
- Effects
- ...

As type systems get more complex, it becomes more difficult to adapt notions of gradual typing.
 [Garcia et al., 2016]

• Can we design a gradual type system with *implicit higher-rank polymorphism*?

- Can we design a gradual type system with *implicit higher-rank polymorphism*?
- State-of-art techniques are inadequate.

Why It Is interesting

 Haskell supports implicit higher-rank polymorphism, but some "safe" programs are rejected:

Why It Is interesting

 Haskell supports implicit higher-rank polymorphism, but some "safe" programs are rejected:

• If we had gradual typing...

let f (x : *) = (x [1, 2], x ['a', 'b'])
in f reverse

Why It Is interesting

 Haskell supports implicit higher-rank polymorphism, but some "safe" programs are rejected:

• If we had gradual typing...

let f (x : *) = (x [1, 2], x ['a', 'b'])
in f reverse

 Moving to more precised version still type checks, but with more static safety guarantee:

let f (x : $\forall a. [a] \rightarrow [a]$) = (x [1, 2], x ['a', 'b']) in f reverse

- A new specification of consistent subtyping that works for implicit higher-rank polymorphism
- An easy-to-follow recipe for turning subtyping into consistent subtyping
- A gradually typed calculus with implicit higher-rank polymorphism
 - Satisfies correctness criteria (formalized in Coq)
 - A sound and complete algorithm

• Consistent subtyping (\lesssim) is the extension of subtyping to gradual types. [Siek and Taha, 2007]

- Consistent subtyping (\lesssim) is the extension of subtyping to gradual types. [Siek and Taha, 2007]
- A static subtyping relation (<:) over gradual types, with the key insight that * is *neutral* to subtyping (* <: *)

- Consistent subtyping (\lesssim) is the extension of subtyping to gradual types. [Siek and Taha, 2007]
- A static subtyping relation (<:) over gradual types, with the key insight that * is *neutral* to subtyping (* <: *)
- An algorithm for consistent subtyping in terms of masking $A|_B$

- Consistent subtyping (\lesssim) is the extension of subtyping to gradual types. [Siek and Taha, 2007]
- A static subtyping relation (<:) over gradual types, with the key insight that * is *neutral* to subtyping (* <: *)
- An algorithm for consistent subtyping in terms of masking $A|_B$

Definition (Consistent Subtyping à la Siek and Taha)

The following two are *equivalent*:

- 1. $A \leq B$ if and only if $A \sim C$ and C <: B for some C.
- 2. $A \lesssim B$ if and only if A <: C and $C \sim B$ for some C.

Image: Gradual typing and subtyping are orthogonal and can be combined in a principled fashion. – Siek and Taha

- Polymorphic types induce a subtyping relation: $\forall a. a \rightarrow a <: Int \rightarrow Int$
- Design consistent subtyping that combines 1) consistency 2) subtyping 3) polymorphism.

- Polymorphic types induce a subtyping relation:
 ∀a. a → a <: Int → Int
- Design consistent subtyping that combines 1) consistency 2) subtyping 3) polymorphism.
- Gradual typing and polymorphism are orthogonal and can be combined in a principled fashion.¹

¹Note that here we are mostly concerned with static semantics.

Problem with Existing Definition

• The underlying static language is the well-established type system for higher-rank types. [Odersky and Läufer, 1996]

Types	A, B	::=	$Int \mid a \mid A \to B \mid \forall a. A$
Monotypes	τ, σ	::=	$Int \mid a \mid \tau \to \sigma$
Terms	е	::=	$x \mid n \mid \lambda x : A. e \mid \lambda x. e \mid e_1 e_2$
Contexts	Ψ	::=	• $ \Psi, x : A \Psi, a$

$\Psi \vdash A <: B$			(Subtyping)
$a \in \Psi$		$\Psi \vdash B_1 <: A_1$	$\Psi \vdash A_2 <: B_2$
$\overline{\Psi \vdash a <: a}$	$\overline{\Psi \vdash Int <: Int}$	$\Psi \vdash A_1 \to A_2$	$<: B_1 \rightarrow B_2$
$\Psi \vdash$	$\tau \qquad \Psi \vdash A[a \mapsto \tau] <: B$	$\Psi, a \vdash$	A <: B
	$\Psi \vdash \forall a. A <: B$	$\overline{\Psi \vdash A}$	<: ∀ a . B

$\Psi \vdash A <$	<: <i>B</i>			(Subtyping)
$a \in V$	ħ		$\Psi \vdash B_1 <: A_1$	$\Psi \vdash A_2 <: B_2$
Ψ ⊢ a <	(: a	$\overline{\Psi \vdash Int <: Int}$	$\Psi \vdash A_1 \to A$	$a_2 <: B_1 \rightarrow B_2$
,	$\Psi \vdash \tau$	$\Psi \vdash A[a \mapsto \tau] <: B$	Ψ, a	– A <: B
-	Ψ	⊢ ∀a. A <: B	$\overline{\Psi \vdash A}$	A <: ∀a. B

$$\boxed{\qquad \overline{\Psi \vdash \star <: \star}}$$

Type Consistency

$$\overline{A \sim B}$$
(Type Consistency) $\overline{A \sim A}$ $\overline{A \sim \star}$ $\overline{A \sim A}$ $\overline{A \sim A}$ $\overline{A_1 \sim B_1}$ $A_2 \sim B_2$ $\overline{A \sim A}$ $\overline{A \sim \star}$ $\overline{A \sim B_1}$

Type Consistency with Polymorphic Types

$A \sim B$			(Ту	pe Consister	icy)
$\overline{A \sim A}$	$\overline{A \sim \star}$	$\overline{\star \sim A}$	$\frac{A_1 \sim B_1}{A_1 \to A_2} \sim$	$\frac{A_2 \sim B_2}{\sim B_1 \rightarrow B_2}$	
		$\frac{A \sim B}{\forall a. A \sim \forall a. B}$			

Type Consistency with Polymorphic Types

The simplicity comes from the orthogonality between consistency and subtyping!

Definition (Consistent Subtyping à la Siek and Taha) The following two are equivalent:

- 1. $A \lesssim B$ if and only if $A \sim C$ and C <: B for some C.
- 2. $A \leq B$ if and only if A <: C and $C \sim B$ for some C.

Equivalence is broken in the polymorphic setting!

Bad News

Definition (Consistent Subtyping à la Siek and Taha) The following two are equivalent:

- 1. $A \lesssim B$ if and only if $A \sim C$ and C <: B for some C.
- 2. $A \lesssim B$ if and only if A <: C and $C \sim B$ for some C. X

Bad News

Definition (Consistent Subtyping à la Siek and Taha) The following two are equivalent:

- 1. $A \lesssim B$ if and only if $A \sim C$ and C <: B for some C. X
- 2. $A \lesssim B$ if and only if A <: C and $C \sim B$ for some C.

Equivalence is broken in the polymorphic setting!

Bad News

Definition (Consistent Subtyping à la Siek and Taha) The following two are equivalent:

- 1. $A \lesssim B$ if and only if $A \sim C$ and C <: B for some C. X
- 2. $A \lesssim B$ if and only if A <: C and $C \sim B$ for some C. X

Equivalence is broken in the polymorphic setting!

$$\begin{array}{c|c} & & \sim & & (((\star \to \operatorname{Int}) \to \operatorname{Int}) \to \operatorname{Bool}) \to & (\operatorname{Int} \to \star) \\ & <: & & \\ & <: & & \\ (((\forall a.a \to \operatorname{Int}) \to \operatorname{Int}) \to \operatorname{Bool}) \to & (\forall a.a) & & \\ & & \sim & \bot \end{array}$$

Revisiting Consistent Subtyping

• Subtyping validates the *subsumption principle*

$$\frac{\Psi \vdash e : A \qquad A <: B}{\Psi \vdash e : B}$$

• Subtyping validates the *subsumption principle*, so should consistent subtyping

$$\frac{\Psi \vdash e : A \qquad A \lesssim B}{\Psi \vdash e : B}$$

• Subtyping validates the *subsumption principle*, so should consistent subtyping

$$\frac{\Psi \vdash e : A \qquad A \lesssim B}{\Psi \vdash e : B}$$

• Subtyping is transitive, but consistent subtyping is not

Observation (I)

If A <: B and $B \lesssim C$, then $A \lesssim C$.

Observation (I)

If A <: B and $B \lesssim C$, then $A \lesssim C$.

Observation (I)

If A <: B and $B \lesssim C$, then $A \lesssim C$.

Observation (I)

If A <: B and B \lesssim C, then A \lesssim C.

Observation (II)

If $C \lesssim B$ and B <: A, then $C \lesssim A$.

Observation (I)

If A <: B and $B \lesssim C$, then $A \lesssim C$.

Observation (II)

If $C \lesssim B$ and B <: A, then $C \lesssim A$.

Definition (Generalized Consistent Subtyping)

 $\Psi \vdash A \lesssim B \stackrel{def}{=} \Psi \vdash A <: A' , A' \sim B' \text{ and } \Psi \vdash B' <: B \text{ for some } A' \text{ and } B'.$

Consistent Subtyping, the Specification

Definition (Generalized Consistent Subtyping)

$$\Psi \vdash A \lesssim B \stackrel{\text{def}}{=} \Psi \vdash A <: A'$$
, $A' \sim B'$ and $\Psi \vdash B' <: B$ for some A' and B' .

$$(((\star \to \operatorname{Int}) \to \operatorname{Bool}) \to (\operatorname{Int} \to \star)$$

$$<: \uparrow$$

$$<: \uparrow$$

$$(((\forall a.a \to \operatorname{Int}) \to \operatorname{Bool}) \to (\forall a.a)$$

$$A = ((\forall a.a \to \operatorname{Int}) \to \operatorname{Int}) \to \operatorname{Bool}) \to (\operatorname{Int} \to \operatorname{Int})$$

$$B = ((orall a. \star
ightarrow \mathsf{Int})
ightarrow \mathsf{Int})
ightarrow \mathsf{Bool})
ightarrow (\mathsf{Int}
ightarrow \star)$$

Non-Determinism

Definition (Generalized Consistent Subtyping) $\Psi \vdash A \lesssim B \stackrel{\text{def}}{=} \Psi \vdash A <: A'$, $A' \sim B'$ and $\Psi \vdash B' <: B$ for some A' and B'.

Two sources of non-determinism:

1. Two intermediate types A' and B'

Non-Determinism

Definition (Generalized Consistent Subtyping) $\Psi \vdash A \leq B \stackrel{\text{def}}{=} \Psi \vdash A <: A'$, $A' \sim B'$ and $\Psi \vdash B' <: B$ for some A' and B'.

Two sources of non-determinism:

1. Two intermediate types A' and B'

2. Guessing monotypes
$$\frac{\Psi \vdash \tau \qquad \Psi \vdash A[a \mapsto \tau] <: B}{\Psi \vdash \forall a. A <: B}$$

Definition (Generalized Consistent Subtyping) $\Psi \vdash A \leq B \stackrel{\text{def}}{=} \Psi \vdash A <: A'$, $A' \sim B'$ and $\Psi \vdash B' <: B$ for some A' and B'.

Two sources of non-determinism:

- 1. Two intermediate types A' and B'
 - We can derive a syntax-directed inductive definition without resorting to subtyping or consistency at all!

Notice $\Psi \vdash \star \lesssim A$ always holds ($\star <: \star \sim A <: A$), and vise versa ($\Psi \vdash A \lesssim \star$)

Consistent Subtyping Without Existentials: First Step

1. Replace <: with \lesssim

$\Psi \vdash A <: B$			(Subtyping)
$a\in\Psi$		$\Psi \vdash B_1 <: A_1$	$\Psi \vdash A_2 <: B_2$
$\Psi \vdash a <: a$	$\overline{\Psi \vdash Int <: Int}$	$\Psi \vdash A_1 \to A_2$	$<: B_1 \rightarrow B_2$
$\frac{\Psi \vdash \tau}{\Psi}$	$\frac{\Psi \vdash A[a \mapsto \tau] <: B}{\downarrow \vdash \forall a \ A <: B}$	$rac{\Psi, a \vdash}{\Psi \vdash A}$	A <: B
4	Va. A <. D	$\Psi \sqcap A$	<. va. D

Consistent Subtyping Without Existentials: First Step

1. Replace <: with \lesssim

$\Psi \vdash A \lesssim$	В		(Consistent S	ubtyping, not yet)
$\frac{a \in \Psi}{\Psi \vdash a \lesssim}$	a	$\overline{\Psi\vdashInt\lesssimInt}$	$\frac{\Psi \vdash B_1 \lesssim A_1}{\Psi \vdash A_1 \to A_2}$	$\frac{\Psi \vdash A_2 \lesssim B_2}{\lesssim B_1 \to B_2}$
Ч 	$\frac{y \vdash \tau}{\Psi}$	$\frac{\Psi \vdash A[a \mapsto \tau] \lesssim B}{\vdash \forall a. A \lesssim B}$	$\frac{\Psi, a \vdash}{\Psi \vdash A}$	$\frac{A \lesssim B}{\lesssim \forall a. B}$

Consistent Subtyping Without Existentials: Second Step

۰.

1. Replace $<: V$ 2. Replace $\Psi \vdash$	with \gtrsim $- \star \lesssim \star$ with $\Psi \vdash \star$	\lesssim A and $\Psi \vdash$ A	$I\lesssim\star$
$\Psi \vdash A \lesssim B$		(Consistent Si	ubtyping, not yet)
$\frac{a \in \Psi}{\Psi \vdash a \lesssim a}$	$\overline{\Psi\vdashInt\lesssimInt}$	$\frac{\Psi \vdash B_1 \lesssim A_1}{\Psi \vdash A_1 \to A_2}$	$\Psidash A_2 \lesssim B_2 \ g \lesssim B_1 o B_2$
$\frac{\Psi \vdash \tau}{\Psi}$	$\frac{\Psi \vdash A[a \mapsto \tau] \lesssim B}{\vdash \forall a. A \lesssim B}$	$\frac{\Psi, a \vdash}{\Psi \vdash A}$	$\frac{A \lesssim B}{\lesssim \forall a. B}$

Consistent Subtyping Without Existentials: Second Step

 Replace <: Replace Ψ 	with \lesssim $\vdash \star \lesssim \star$ with $\Psi \vdash \star$	\lesssim A and $\Psi \vdash$ A	$1 \lesssim \star$
$\Psi \vdash A \lesssim B$		(Cons	sistent Subtyping)
$\frac{a \in \Psi}{\Psi \vdash a \lesssim a}$	$\overline{\Psi \vdash Int \lesssim Int}$	$\frac{\Psi \vdash B_1 \lesssim A_1}{\Psi \vdash A_1 \to A_2}$	$\Psidash A_2 \lesssim B_2 \ \lesssim B_1 o B_2$
$\frac{\Psi \vdash \tau}{\Psi}$	$\frac{\Psi \vdash A[a \mapsto \tau] \lesssim B}{\Psi \vdash \forall a. A \lesssim B}$	$\frac{\Psi, a \vdash}{\Psi \vdash A}$	$\frac{A \lesssim B}{\lesssim \forall a. B}$
	$\overline{\Psi \vdash \star \lesssim A}$	$\overline{\Psi \vdash A \lesssim \star}$	

Theorem

 $\Psi \vdash A \lesssim B$ iff $\Psi \vdash A <: A', A' \sim B'$ and $\Psi \vdash B' <: B$ for some A' and B'.

Declarative Type System

$\Psi \vdash e:A$	(Typing, selected rules
$\frac{\Psi, a \vdash e : A}{\Psi \vdash e : \forall a. A} $ U-GEN	$\frac{\Psi, x : A \vdash e : B}{\Psi \vdash \lambda x : A. e : A \rightarrow B} $ U-LAMANN
	$\Psidash e_1: A \qquad \Psidash A \triangleright A_1 o A_2$
$\Psi, x: \tau \vdash e: B$	$\Psidash e_2: {\mathcal A}_3 \qquad \Psidass {\mathcal A}_3 \lesssim {\mathcal A}_1$
$\overline{\Psi \vdash \lambda x. e: \tau \rightarrow B}$ U-LAM	${\Psi \vdash e_1 e_2 : A_2} \qquad \qquad$

Type System

$$\frac{\Psi \vdash e_1 : A}{\Psi \vdash e_2 : A_3} \frac{\Psi \vdash A \triangleright A_1 \to A_2}{\Psi \vdash A_3 \lesssim A_1}$$

$$\frac{\Psi \vdash e_1 e_2 : A_2}{\Psi \vdash e_1 e_2 : A_2}$$

$$\label{eq:product} \boxed{\Psi \vdash A \triangleright A_1 \to A_2} \tag{Matching}$$

$$\frac{\Psi \vdash \tau \qquad \Psi \vdash A[a \mapsto \tau] \triangleright A_1 \to A_2}{\Psi \vdash \forall a. \ A \triangleright A_1 \to A_2} \qquad \text{m-forall}$$

$$\overline{\Psi \vdash A_1 \to A_2 \triangleright A_1 \to A_2} \overset{\text{M-ARR}}{\longrightarrow} \overline{\Psi \vdash \star \triangleright \star \to \star} \overset{\text{M-UNKNOWN}}{\longrightarrow}$$

- Type-directed translation into an intermediate language with runtime casts (Ψ ⊢ e : A → s)
- We translate to the Polymorphic Blame Calculus (PBC) [Ahmed et al., 2011]

PBC terms² $s ::= x \mid n \mid \lambda x : A. s \mid \Lambda a. s \mid s_1 s_2 \mid \langle A \hookrightarrow B \rangle s$

²Only a subst of PBC terms are used

Correctness Criteria

- Conservative extension: for all static Ψ , e, and A,
 - if $\Psi \vdash^{OL} e : A$, then there exists B, such that $\Psi \vdash e : B$, and $\Psi \vdash B <: A$.
 - if $\Psi \vdash e : A$, then $\Psi \vdash^{OL} e : A$
- Monotonicity w.r.t. precision: for all Ψ, e, e', A, if
 Ψ ⊢ e : A, and e' ⊑ e, then Ψ ⊢ e' : B, and B ⊑ A for some
 B.
- Type Preservation of cast insertion: for all Ψ, e, A, if
 Ψ ⊢ e : A, then Ψ ⊢ e : A → s, and Ψ ⊢^B s : A for some s.
- Monotonicity of cast insertion: for all Ψ, e₁, e₂, s₁, s₂, A, if Ψ ⊢ e₁ : A → s₁, and Ψ ⊢ e₂ : A → s₂, and e₁ ⊑ e₂, then Ψ ⊢ Ψ ⊢ s₁ ⊑^B s₂.

Correctness Criteria

- Conservative extension: for all static Ψ , e, and A,
 - if $\Psi \vdash^{OL} e : A$, then there exists B, such that $\Psi \vdash e : B$, and $\Psi \vdash B <: A$.
 - if $\Psi \vdash e : A$, then $\Psi \vdash^{OL} e : A$
- Monotonicity w.r.t. precision: for all Ψ, e, e', A, if
 Ψ ⊢ e : A, and e' ⊑ e, then Ψ ⊢ e' : B, and B ⊑ A for some
 B.
- Type Preservation of cast insertion: for all Ψ, e, A, if
 Ψ ⊢ e : A, then Ψ ⊢ e : A → s, and Ψ ⊢^B s : A for some s.
- Monotonicity of cast insertion: for all Ψ, e₁, e₂, s₁, s₂, A, if Ψ ⊢ e₁ : A →→ s₁, and Ψ ⊢ e₂ : A →→ s₂, and e₁ ⊑ e₂, then Ψ ⊢ Ψ ⊢ s₁ ⊑^B s₂.

Proved in Coq!

- A bidirectional account of the algorithmic type system (inspired by [Dunfield and Krishnaswami, 2013])
- Extension to top types
- Discussion and comparison with other approaches (AGT [Garcia et al., 2016], Directed Consistency [Jafery and Dunfield, 2017])
- Discussion of dynamic guarantee

- Fix the issue with dynamic guarantee (partially)
- More features: mutable state, fancy types, etc.

References

- A. Ahmed, R. B. Findler, J. G. Siek, and P. Wadler. Blame for all. In *POPL*, 2011.
- J. Dunfield and N. R. Krishnaswami. Complete and easy bidirectional typechecking for higher-rank polymorphism. In *ICFP*, 2013.
- R. Garcia, A. M. Clark, and É. Tanter. Abstracting gradual typing. In *POPL*, 2016.
- K. A. Jafery and J. Dunfield. Sums of uncertainty: Refinements go gradual. In POPL, 2017.
- M. Odersky and K. Läufer. Putting type annotations to work. In POPL, 1996.
- J. G. Siek and W. Taha. Gradual typing for objects. In ECOOP, 2007.

Consistent Subtyping for All

Ningning Xie <u>Xuan Bi</u> Bruno C. d. S. Oliveira 16 April, 2018

The University of Hong Kong ESOP 2018, Thessaloniki, Greece

Backup Slides

- Changes to the annotations of a gradually typed program should not change the dynamic behaviour of the program.
- The declarative system breaks it...

$$(\lambda f: \forall a. a \rightarrow \operatorname{Int.} \lambda x: \operatorname{Int.} f x) (\lambda x. 1) 3 \Downarrow 3$$

 $(\lambda f: \forall a. a \rightarrow \operatorname{Int.} \lambda x: \star. f x) (\lambda x. 1) 3 \Downarrow ?$

- A common problem in gradual type inference, see [Garcia and Cimini 2015]. Static and gradual type parameters may help.
- A more sophisticated term precision is needed in PBC. [Igarashi et al. 2017]