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Abstract. Popular programming techniques such as shallow embeddings
of Domain Specific Languages (DSLs), finally tagless or object algebras
are built on the principle of compositionality. However, existing program-
ming languages only support simple compositional designs well, and have
limited support for more sophisticated ones.
This paper presents the F+

i calculus, which supports highly modular and
compositional designs that improve on existing techniques. These im-
provements are due to the combination of three features: disjoint inter-
section types with a merge operator ; parametric (disjoint) polymorphism;
and BCD-style distributive subtyping. The main technical challenge is
F+
i ’s proof of coherence. A naive adaptation of ideas used in System F’s

parametricity to canonicity (the logical relation used by F+
i to prove co-

herence) results in an ill-founded logical relation. To solve the problem
our canonicity relation employs a different technique based on immediate
substitutions and a restriction to predicative instantiations. Besides co-
herence, we show several other important meta-theoretical results, such
as type-safety, sound and complete algorithmic subtyping, and decidabil-
ity of the type system. Remarkably, unlike F<:’s bounded polymorphism,
disjoint polymorphism in F+

i supports decidable type-checking.

1 Introduction

Compositionality is a desirable property in programming designs. Broadly de-
fined, it is the principle that a system should be built by composing smaller sub-
systems. For instance, in the area of programming languages, compositionality
is a key aspect of denotational semantics [48, 49], where the denotation of a pro-
gram is constructed from the denotations of its parts. Compositional definitions
have many benefits. One is ease of reasoning: since compositional definitions are
recursively defined over smaller elements they can typically be reasoned about
using induction. Another benefit is that compositional definitions are easy to
extend, without modifying previous definitions.

Programming techniques that support compositional definitions include: shal-
low embeddings of Domain Specific Languages (DSLs) [20], finally tagless [11],
polymorphic embeddings [26] or object algebras [35]. These techniques allow us
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to create compositional definitions, which are easy to extend without modifica-
tions. Moreover, when modeling semantics, both finally tagless and object alge-
bras support multiple interpretations (or denotations) of syntax, thus offering a
solution to the well-known Expression Problem [53]. Because of these benefits
these techniques have become popular both in the functional and object-oriented
programming communities.

However, programming languages often only support simple compositional
designs well, while support for more sophisticated compositional designs is lack-
ing. For instance, once we have multiple interpretations of syntax, we may wish
to compose them. Particularly useful is a merge combinator, which composes two
interpretations [35, 37, 42] to form a new interpretation that, when executed,
returns the results of both interpretations.

The merge combinator can be manually defined in existing programming
languages, and be used in combination with techniques such as finally tagless or
object algebras. Moreover variants of the merge combinator are useful to model
more complex combinations of interpretations. A good example are so-called
dependent interpretations, where an interpretation does not depend only on
itself, but also on a different interpretation. These definitions with dependencies
are quite common in practice, and, although they are not orthogonal to the
interpretation they depend on, we would like to model them (and also mutually
dependent interpretations) in a modular and compositional style.

Defining the merge combinator in existing programming languages is verbose
and cumbersome, requiring code for every new kind of syntax. Yet, that code
is essentially mechanical and ought to be automated. While using advanced
meta-programming techniques enables automating the merge combinator to a
large extent in existing programming languages [37, 42], those techniques have
several problems: error messages can be problematic, type-unsafe reflection is
needed in some approaches [37] and advanced type-level features are required
in others [42]. An alternative to the merge combinator that supports modular
multiple interpretations and works in OO languages with support for some form
of multiple inheritance and covariant type-refinement of fields has also been
recently proposed [55]. While this approach is relatively simple, it still requires
a lot of manual boilerplate code for composition of interpretations.

This paper presents a calculus and polymorphic type system with (disjoint)
intersection types [36], called F+

i . F+
i supports our broader notion of compo-

sitional designs, and enables the development of highly modular and reusable
programs. F+

i has a built-in merge operator and a powerful subtyping relation
that are used to automate the composition of multiple (possibly dependent)
interpretations. In F+

i subtyping is coercive and enables the automatic gener-
ation of coercions in a type-directed fashion. This process is similar to that of
other type-directed code generation mechanisms such as type classes [52], which
eliminate boilerplate code associated to the dictionary translation [52].

F+
i continues a line of research on disjoint intersection types. Previous work on

disjoint polymorphism (the Fi calculus) [2] studied the combination of parametric
polymorphism and disjoint intersection types, but its subtyping relation does
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not support BCD-style distributivity rules [3] and the type system also prevents
unrestricted intersections [16]. More recently the NeColus calculus (or λ+i ) [5]
introduced a system with disjoint intersection types and BCD-style distributivity
rules, but did not account for parametric polymorphism. F+

i is unique in that it
combines all three features in a single calculus: disjoint intersection types and a
merge operator ; parametric (disjoint) polymorphism; and a BCD-style subtyping
relation with distributivity rules. The three features together allow us to improve
upon the finally tagless and object algebra approaches and support advanced
compositional designs. Moreover previous work on disjoint intersection types
has shown various other applications that are also possible in F+

i , including:
first-class traits and dynamic inheritance [4], extensible records and dynamic
mixins [2], and nested composition and family polymorphism [5].

Unfortunately the combination of the three features has non-trivial compli-
cations. The main technical challenge (like for most other calculi with disjoint
intersection types) is the proof of coherence for F+

i . Because of the presence of
BCD-style distributivity rules, our coherence proof is based on the recent ap-
proach employed in λ+i [5], which uses a heterogeneous logical relation called
canonicity. To account for polymorphism, which λ+i ’s canonicity does not sup-
port, we originally wanted to incorporate the relevant parts of System F’s logical
relation [43]. However, due to a mismatch between the two relations, this did
not work. The parametricity relation has been carefully set up with a delayed
type substitution to avoid ill-foundedness due to its impredicative polymorphism.
Unfortunately, canonicity is a heterogeneous relation and needs to account for
cases that cannot be expressed with the delayed substitution setup of the homo-
geneous parametricity relation. Therefore, to handle those heterogeneous cases,
we resorted to immediate substitutions and predicative instantiations. We do not
believe that predicativity is a severe restriction in practice, since many source
languages (e.g., those based on the Hindley-Milner type system like Haskell and
OCaml) are themselves predicative and do not require the full generality of an
impredicative core language. Should impredicative instantiation be required, we
expect that step-indexing [1] can be used to recover well-foundedness, though at
the cost of a much more complicated coherence proof.

The formalization and metatheory of F+
i are a significant advance over that

of Fi. Besides the support for distributive subtyping, F+
i removes several restric-

tions imposed by the syntactic coherence proof in Fi. In particular F+
i supports

unrestricted intersections, which are forbidden in Fi. Unrestricted intersections
enable, for example, encoding certain forms of bounded quantification [39]. More-
over the new proof method is more robust with respect to language extensions.
For instance, F+

i supports the bottom type without significant complications in
the proofs, while it was a challenging open problem in Fi. A final interesting
aspect is that F+

i ’s type-checking is decidable. In the design space of languages
with polymorphism and subtyping, similar mechanisms have been known to
lead to undecidability. Pierce’s seminal paper “Bounded quantification is unde-
cidable” [40] shows that the contravariant subtyping rule for bounded quantifi-
cation in F<: leads to undecidability of subtyping. In F+

i the contravariant rule
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for disjoint quantification retains decidability. Since with unrestricted intersec-
tions F+

i can express several use cases of bounded quantification, F+
i could be

an interesting and decidable alternative to F<:.
In summary the contributions of this paper are:

– The F+
i calculus, which is the first calculus to combine disjoint intersec-

tion types, BCD-style distributive subtyping and disjoint polymorphism. We
show several meta-theoretical results, such as type-safety, sound and com-
plete algorithmic subtyping, coherence and decidability of the type system.
F+
i includes the bottom type, which was considered to be a significant chal-

lenge in previous work on disjoint polymorphism [2].
– An extension of the canonicity relation with polymorphism, which

enables the proof of coherence of F+
i . We show that the ideas of System F’s

parametricity cannot be ported to F+
i . To overcome the problem we use a

technique based on immediate substitutions and a predicativity restriction.
– Improved compositional designs: We show that F+

i ’s combination of
features enables improved compositional programming designs and supports
automated composition of interpretations in programming techniques like
object algebras and finally tagless.

– Implementation and proofs: All of the metatheory of this paper, except
some manual proofs of decidability, has been mechanically formalized in Coq.
Furthermore, F+

i is implemented and all code presented in the paper is avail-
able. The implementation, Coq proofs and extended version with appendices
can be found in https://github.com/bixuanzju/ESOP2019-artifact.

2 Compositional Programming

To demonstrate the compositional properties of F+
i we use Gibbons and Wu’s

shallow embeddings of parallel prefix circuits [20]. By means of several different
shallow embeddings, we first illustrate the short-comings of a state-of-the-art
compositional approach, popularly known as a finally tagless encoding [11], in
Haskell. Next we show how parametric polymorphism and distributive intersec-
tion types provide a more elegant and compact solution in SEDEL [4], a source
language built on top of our F+

i calculus.

2.1 A Finally Tagless Encoding in Haskell

The circuit DSL represents networks that map a number of inputs (known as the
width) of some type A onto the same number of outputs of the same type. The
outputs combine (with repetitions) one or more inputs using a binary associative
operator ⊕ : A×A→ A. A particularly interesting class of circuits that can be
expressed in the DSL are parallel prefix circuits. These represent computations
that take n > 0 inputs x1, . . . , xn and produce n outputs y1, . . . , yn, where
yi = x1 ⊕ x2 ⊕ . . .⊕ xi.

The DSL features 5 language primitives: two basic circuit constructors and
three circuit combinators. These are captured in the Haskell type class Circuit:

https://github.com/bixuanzju/ESOP2019-artifact
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data Width = W { width :: Int }

instance Circuit Width where
identity n = W n

fan n = W n

beside c1 c2 =

W (width c1 + width c2)

above c1 c2 = c1

stretch ws c = W (sum ws)

(a) Width embedding

data Depth = D { depth :: Int }

instance Circuit Depth where
identity n = D 0

fan n = D 1

beside c1 c2 =

D (max (depth c1) (depth c2))

above c1 c2 = D (depth c1 + depth c2)

stretch ws c = c

(b) Depth embedding

Fig. 1: Two finally tagless embeddings of circuits.

class Circuit c where
identity :: Int → c

fan :: Int → c

beside :: c → c → c

above :: c → c → c

stretch :: [Int] → c → c

An identity circuit with n inputs xi, has n outputs yi = xi. A fan circuit
has n inputs xi and n outputs yi, where y1 = x1 and yj = x1 ⊕ xj (j > 1).
The binary beside combinator puts two circuits in parallel; the combined circuit
takes the inputs of both circuits to the outputs of both circuits. The binary above

combinator connects the outputs of the first circuit to the inputs of the second;
the width of both circuits has to be same. Finally, stretch ws c interleaves the
wires of circuit c with bundles of additional wires that map their input straight
on their output. The ws parameter specifies the width of the consecutive bundles;
the ith wire of c is preceded by a bundle of width wsi − 1.

Basic width and depth embeddings. Figure 1 shows two simple shallow embed-
dings, which represent a circuit respectively in terms of its width and its depth.
The former denotes the number of inputs/outputs of a circuit, while the latter
is the maximal number of ⊕ operators between any input and output. Both
definitions follow the same setup: a new Haskell datatype (Width/Depth) wraps
the primitive result value and provides an instance of the Circuit type class
that interprets the 5 DSL primitives accordingly. The following code creates a
so-called Brent-Kung parallel prefix circuit [9]:

e1 :: Width

e1 = above (beside (fan 2) (fan 2))

(above (stretch [2, 2] (fan 2))

(beside (beside (identity 1) (fan 2)) (identity 1)))

Here e1 evaluates to W {width = 4}. If we want to know the depth of the circuit,
we have to change type signature to Depth.
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Interpreting multiple ways. Fortunately, with the help of polymorphism we can
define a type of circuits that support multiple interpretations at once.

type DCircuit = forall c. Circuit c ⇒ c

This way we can provide a single Brent-Kung parallel prefix circuit definition
that can be reused for different interpretations.

brentKung :: DCircuit

brentKung = above (beside (fan 2) (fan 2))

(above (stretch [2, 2] (fan 2))

(beside (beside (identity 1) (fan 2)) (identity 1)))

A type annotation then selects the desired interpretation. For instance, brentKung
:: Width yields the width and brentKung :: Depth the depth.

Composition of embeddings. What is not ideal in the above code is that the
same brentKung circuit is processed twice, if we want to execute both interpre-
tations. We can do better by processing the circuit only once, computing both
interpretations simultaneously. The finally tagless encoding achieves this with a
boilerplate instance for tuples of interpretations.

instance (Circuit c1, Circuit c2) ⇒ Circuit (c1, c2) where
identity n = (identity n, identity n)

fan n = (fan n, fan n)

beside c1 c2 = (beside (fst c1) (fst c2), beside (snd c1) (snd c2))

above c1 c2 = (above (fst c1) (fst c2), above (snd c1) (snd c2))

stretch ws c = (stretch ws (fst c), stretch ws (snd c))

Now we can get both embeddings simultaneously as follows:

e12 :: (Width, Depth)

e12 = brentKung

This evaluates to (W {width = 4}, D {depth = 2}).

Composition of dependent interpretations. The composition above is easy be-
cause the two embeddings are orthogonal. In contrast, the composition of depen-
dent interpretations is rather cumbersome in the standard finally tagless setup.
An example of the latter is the interpretation of circuits as their well-sizedness,
which captures whether circuits are well-formed. This interpretation depends on
the interpretation of circuits as their width.3

data WellSized = WS { wS :: Bool, ox :: Width }

instance Circuit WellSized where
identity n = WS True (identity n)

fan n = WS True (fan n)

beside c1 c2 = WS (wS c1 && wS c2) (beside (ox c1) (ox c2))

3 Dependent recursion schemes are also known as zygomorphism [18] after the ancient
Greek word ζυγον for yoke. We have labeled the Width field with ox because it is
pulling the yoke.
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above c1 c2 = WS (wS c1 && wS c2 && width (ox c1) == width (ox c2))

(above (ox c1) (ox c2))

stretch ws c = WS (wS c && length ws==width (ox c)) (stretch ws (ox c))

The WellSized datatype represents the well-sizedness of a circuit with a Boolean,
and also keeps track of the circuit’s width. The 5 primitives compute the well-
sizedness in terms of both the width and well-sizedness of the subcomponents.
What makes the code cumbersome is that it has to explicitly delegate to the
Width interpretation to collect this additional information.

With the help of a substantially more complicated setup that features a
dozen Haskell language extensions, and advanced programming techniques, we
can make the explicit delegation implicit (see the appendix). Nevertheless, that
approach still requires a lot of boilerplate that needs to be repeated for each
DSL, as well as explicit projections that need to be written in each interpreta-
tion. Another alternative Haskell encoding that also enables multiple dependent
interpretations is proposed by Zhang and Oliveira [55], but it does not elimi-
nate the explicit delegation and still requires substantial amounts of boilerplate.
A final remark is that adding new primitives (e.g., a “right stretch” rstretch

combinator [25]) can also be easily achieved [46].

2.2 The SEDEL Encoding

SEDEL is a source language that elaborates to F+
i , adding a few convenient

source level constructs. The SEDEL setup of the circuit DSL is similar to the
finally tagless approach. Instead of a Circuit c type class, there is a Circuit[C]

type that gathers the 5 circuit primitives in a record. Like in Haskell, the type
parameter C expresses that the interpretation of circuits is a parameter.

type Circuit[C] = {

identity : Int → C, fan : Int → C, beside : C → C → C,

above : C → C → C, stretch : List[Int] → C → C };

As a side note if a new constructor (e.g., rstretch) is needed, then this is done
by means of intersection types (& creates an intersection type) in SEDEL:

type NCircuit[C] = Circuit[C] & { rstretch : List[Int] → C → C };

Figure 2 shows the two basic shallow embeddings for width and depth.
In both cases, a named SEDEL definition replaces the corresponding unnamed
Haskell type class instance in providing the implementations of the 5 language
primitives for a particular interpretation.

The use of the SEDEL embeddings is different from that of their Haskell coun-
terparts. Where Haskell implicitly selects the appropriate type class instance
based on the available type information, in SEDEL the programmer explicitly
selects the implementation following the style used by object algebras. The fol-
lowing code does this by building a circuit with l1 (short for language1).

l1 = language1;

e1 = l1.above (l1.beside (l1.fan 2) (l1.fan 2))
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type Width = { width : Int };

language1 : Circuit[Width] = {

identity (n : Int) = { width = n },

fan (n : Int) = { width = n },

beside (c1 : Width) (c2 : Width) = { width = c1.width + c2.width },

above (c1 : Width) (c2 : Width) = { width = c1.width },

stretch (ws : List[Int]) (c : Width) = { width = sum ws } };

type Depth = { depth : Int };

language2 : Circuit[Depth] = {

identity (n : Int) = { depth = 0 },

fan (n : Int) = { depth = 1 },

beside (c1 : Depth) (c2 : Depth) = { depth = max c1.depth c2.depth},

above (c1 : Depth) (c2 : Depth) = { depth = c1.depth + c2.depth},

stretch (ws : List[Int]) (c : Depth) = { depth = c.depth } };

Fig. 2: Two SEDEL embeddings of circuits.

(l1.above (l1.stretch (cons 2 (cons 2 nil)) (l1.fan 2))

(l1.beside (l1.beside (l1.identity 1) (l1.fan 2)) (l1.identity 1)));

Here e1 evaluates to {width = 4}. If we want to know the depth of the circuit,
we have to replicate the code with language2.

Dynamically reusable circuits. Just like in Haskell, we can use polymorphism to
define a type of circuits that can be interpreted with different languages.

type DCircuit = { accept : forall C. Circuit[C] → C };

In contrast to the Haskell solution, this implementation explicitly accepts the
implementation.

brentKung : DCircuit = {

accept C l = l.above (l.beside (l.fan 2) (l.fan 2))

(l.above (l.stretch (cons 2 (cons 2 nil)) (l.fan 2))

(l.beside (l.beside (l.identity 1) (l.fan 2)) (l.identity 1))) };

e1 = brentKung.accept Width language1;

e2 = brentKung.accept Depth language2;

Automatic composition of languages. Of course, like in Haskell we can also com-
pute both results simultaneously. However, unlike in Haskell, the composition of
the two interpretation requires no boilerplate whatsoever—in particular, there
is no SEDEL counterpart of the Circuit (c1, c2) instance. Instead, we can just
compose the two interpretations with the term-level merge operator (,,) and
specify the desired type Circuit[Width & Depth].

language3 : Circuit[Width & Depth] = language1 ,, language2;

e3 = brentKung.accept (Width & Depth) language3;
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Here the use of the merge operator creates a term with the intersection type
Circuit[Width] & Circuit[Depth]. Implicitly, the SEDEL type system takes care
of the details, turning this intersection type into Circuit[Width & Depth]. This
is possible because intersection (&) distributes over function and record types (a
distinctive feature of BCD-style subtyping).

Composition of dependent interpretations. In SEDEL the composition scales
nicely to dependent interpretations. For instance, the well-sizedness interpre-
tation can be expressed without explicit projections.

type WellSized = { wS : Bool };

language4 = {

identity (n : Int) = { wS = true },

fan (n : Int) = { wS = true },

above (c1 : WellSized & Width) (c2 : WellSized & Width) =

{ wS = c1.wS && c2.wS && c1.width == c2.width },

beside (c1 : WellSized) (c2 : WellSized) = { wS = c1.wS && c2.wS },

stretch (ws : List[Int]) (c : WellSized & Width) =

{ wS = c.wS && length ws == c.width } };

Here the WellSized & Width type in the above and stretch cases expresses that
both the well-sizedness and width of subcircuits must be given, and that the
width implementation is left as a dependency—when language4 is used, then
the width implementation must be provided. Again, the distributive properties
of & in the type system take care of merging the two interpretations.

e4 = brentKung.accept (WellSized & Width) (language1 ,, language4);

main = e4.wS -- Output: true

Disjoint polymorphism and dynamic merges. While it may seem from the above
examples that definitions have to be merged statically, SEDEL in fact supports
dynamic merges. For instance, we can encapsulate the merge operator in the
combine function while abstracting over the two components x and y that are
merged as well as over their types A and B.

combine A [B * A] (x : A) (y : B) = x ,, y;

This way the components x and y are only known at runtime and thus the merge
can only happen at that time. The types A and B cannot be chosen entirely freely.
For instance, if both components would contribute an implementation for the
same method, which implementation is provided by the combination would be
ambiguous. To avoid this problem the two types A and B have to be disjoint.
This is expressed in the disjointness constraint * A on the quantifier of the type
variable B. If a quantifier mentions no disjointness constraint, like that of A, it
defaults to the trivial * > constraint which implies no restriction.

3 Semantics of the F+
i Calculus

This section gives a formal account of F+
i , the first typed calculus combining dis-

joint polymorphism [2] (and disjoint intersection types) with BCD subtyping [3].
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Types A,B ,C ::= Int | > | ⊥ | A→ B | A & B | {l : A} | α | ∀(α ∗A).B
Expressions E ::= x | i | > | λx .E | E1 E2 | E1 , , E2 | E : A | {l = E} | E .l

| Λ(α ∗A).E | E A
Term contexts Γ ::= • | Γ, x : A
Type contexts ∆ ::= • | ∆,α ∗A

Fig. 3: Syntax of F+
i

The main differences to Fi are in the subtyping, well-formedness and disjointness
relations. F+

i adds BCD subtyping and unrestricted intersections, and also closes
an open problem of Fi by including the bottom type. The dynamic semantics
of F+

i is given by elaboration to the target calculus Fco—a variant of System F
extended with products and explicit coercions.

3.1 Syntax and Semantics

Figure 3 shows the syntax of F+
i . Metavariables A,B ,C range over types. Types

include standard constructs from prior work [2, 36]: integers Int, the top type >,
arrows A→ B , intersections A & B , single-field record types {l : A} and disjoint
quantification ∀(α ∗A).B . One novelty in F+

i is the addition of the uninhabited
bottom type ⊥. Metavariable E ranges over expressions. Expressions are integer
literals i, the top value >, lambda abstractions λx .E , applications E1 E2, merges
E1 , , E2, annotated terms E : A, single-field records {l = E}, record projections
E .l , type abstractions Λ(α ∗A).E and type applications E A.

Well-formedness and unrestricted intersections. F+
i ’s well-formedness judgment

of types ∆ ` A is standard, and only enforces well-scoping. This is one of the key
differences from Fi, which uses well-formedness to also ensure that all intersection
types are disjoint. In other words, while in Fi all valid intersection types must
be disjoint, in F+

i unrestricted intersection types such as Int& Int are allowed.
More specifically, the well-formedness of intersection types in F+

i and Fi is:

∆ ` A ∆ ` B

∆ ` A & B
wf-F+

i

∆ ` A ∆ ` B ∆ ` A ∗ B

∆ ` A & B
wf-Fi

Notice that Fi has an extra disjointness condition ∆ ` A∗B in the premise. This
is crucial for Fi’s syntactic method for proving coherence, but also burdens the
calculus with various syntactic restrictions and complicates its metatheory. For
example, it requires extra effort to show that Fi only produces disjoint intersec-
tion types. As a consequence, Fi features a weaker substitution lemma (note the
gray part in Proposition 1) than F+

i (Lemma 1).

Proposition 1 (Type substitution in Fi). If ∆ ` A, ∆ ` B, (α ∗ C ) ∈ ∆,

∆ ` B ∗ C and well-formed context [B/α]∆, then [B/α]∆ ` [B/α]A.

Lemma 1 (Type substitution in F+
i ). If ∆ ` A, ∆ ` B, (α ∗ C ) ∈ ∆ and

well-formed context [B/α]∆, then [B/α]∆ ` [B/α]A.
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A <: B  co (Declarative subtyping)

S-refl

A <: A  id

S-trans
A2 <: A3  co1 A1 <: A2  co2

A1 <: A3  co1 ◦ co2

S-top

A <: >  top

S-rcd
A <: B  co

{l : A} <: {l : B}  co

S-andl

A1 & A2 <: A1  π1

S-andr

A1 & A2 <: A2  π2

S-arr
B1 <: A1  co1 A2 <: B2  co2

A1 → A2 <: B1 → B2  co1 → co2

S-and
A1 <: A2  co1 A1 <: A3  co2

A1 <: A2 & A3  〈co1, co2〉

S-distArr

(A1 → A2) & (A1 → A3) <: A1 → A2 & A3  dist→

S-topArr

> <: > → >  top→

S-distRcd

{l : A}& {l : B} <: {l : A & B}  id

S-topRcd

> <: {l : >}  id

S-bot

⊥ <: A  bot

S-forall
B1 <: B2  co A2 <: A1

∀(α ∗A1).B1 <: ∀(α ∗A2).B2  co∀

S-topAll

> <: ∀(α ∗ >).>  top∀

S-distAll

(∀(α ∗A).B1) & (∀(α ∗A).B2) <: ∀(α ∗A).B1 & B2  dist∀

Fig. 4: Declarative subtyping

Declarative subtyping. F+
i ’s subtyping judgment is another major difference to

Fi, because it features BCD-style subtyping and a rule for the bottom type. The
full set of subtyping rules are shown in Fig. 4. The reader is advised to ignore the
gray parts for now. Our subtyping rules extend the BCD-style subtyping rules
from λ+i [5] with a rule for parametric (disjoint) polymorphism (rule S-forall).
Moreover, we have three new rules: rule S-bot for the bottom type, and rules S-
distAll and S-topAll for distributivity of disjoint quantification. The sub-
typing relation is a partial order (rules S-refl and S-trans). Most of the rules
are quite standard. ⊥ is a subtype of all types (rule S-bot). Subtyping of dis-
joint quantification is covariant in its body, and contravariant in its disjointness
constraints (rule S-forall). Of particular interest are those so-called “distribu-
tivity” rules: rule S-distArr says intersections distribute over arrows; rule S-
distRcd says intersections distribute over records. Similarly, rule S-distAll
dictates that intersections may distribute over disjoint quantifiers.
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∆;Γ ` E ⇒ A  e (Inference)

T-top
` ∆ ∆ ` Γ

∆;Γ ` > ⇒ >  〈〉

T-nat
` ∆ ∆ ` Γ

∆;Γ ` i⇒ Int  i

T-var
` ∆ ∆ ` Γ (x : A) ∈ Γ

∆;Γ ` x ⇒ A  x

T-app
∆;Γ ` E1 ⇒ A1 → A2  e1

∆;Γ ` E2 ⇐ A1  e2

∆;Γ ` E1 E2 ⇒ A2  e1 e2

T-merge
∆;Γ ` E1 ⇒ A1  e1

∆;Γ ` E2 ⇒ A2  e2 ∆ ` A1 ∗A2

∆;Γ ` E1 , , E2 ⇒ A1 & A2  〈e1, e2〉

T-anno
∆;Γ ` E ⇐ A  e

∆;Γ ` E : A⇒ A  e

T-rcd
∆;Γ ` E ⇒ A  e

∆;Γ ` {l = E} ⇒ {l : A}  e

T-proj
∆;Γ ` E ⇒ {l : A}  e

∆;Γ ` E .l ⇒ A  e

T-tabs
∆,α ∗A;Γ ` E ⇒ B  e ∆ ` A ∆ ` Γ
∆;Γ ` Λ(α ∗A).E ⇒ ∀(α ∗A).B  Λα. e

T-tapp
∆;Γ ` E ⇒ ∀(α ∗ B).C  e ∆ ` A ∗ B

∆;Γ ` E A⇒ [A/α]C  e |A|

∆;Γ ` E ⇐ A  e (Checking)

T-abs
∆ ` A ∆;Γ, x : A ` E ⇐ B  e

∆;Γ ` λx .E ⇐ A→ B  λx . e

T-sub
∆;Γ ` E ⇒ B  e B <: A  co

∆;Γ ` E ⇐ A  co e

Fig. 5: Bidirectional type system

Typing rules. F+
i features a bidirectional type system inherited from Fi. The

full set of typing rules are shown in Fig. 5. Again we ignore the gray parts
and explain them in Section 3.3. The inference judgment ∆;Γ ` E ⇒ A says
that we can synthesize the type A under the contexts ∆ and Γ . The checking
judgment ∆;Γ ` E ⇐ A asserts that E checks against the type A under the
contexts ∆ and Γ . Most of the rules are quite standard in the literature. The
merge expression E1 , , E2 is well-typed if both sub-expressions are well-typed,
and their types are disjoint (rule T-merge). The disjointness relation will be
explained in Section 3.2. To infer a type abstraction (rule T-tabs), we add
disjointness constraints to the type context. For a type application (rule T-
tapp), we check that the type argument satisfies the disjointness constraints.
Rules T-merge and T-tapp are the only rules checking disjointness.
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eAd (Top-like types)

TL-top

e>d

TL-and
eAd eBd
eA & Bd

TL-arr
eBd

eA→ Bd

TL-rcd
eAd

e{l : A}d

TL-all
eBd

e∀(α ∗A).Bd

∆ ` A ∗ B (Disjointness)

D-topL
eAd

∆ ` A ∗ B

D-topR
eBd

∆ ` A ∗ B

D-arr
∆ ` A2 ∗ B2

∆ ` A1 → A2 ∗ B1 → B2

D-andL
∆ ` A1 ∗ B ∆ ` A2 ∗ B

∆ ` A1 & A2 ∗ B

D-andR
∆ ` A ∗ B1 ∆ ` A ∗ B2

∆ ` A ∗ B1 & B2

D-rcdEq
∆ ` A ∗ B

∆ ` {l : A} ∗ {l : B}

D-rcdNeq
l1 6= l2

∆ ` {l1 : A} ∗ {l2 : B}

D-tvarL
(α ∗A) ∈ ∆ A <: B

∆ ` α ∗ B

D-tvarR
(α ∗A) ∈ ∆ A <: B

∆ ` B ∗ α

D-forall
∆,α ∗A1 & A2 ` B1 ∗ B2

∆ ` ∀(α ∗A1).B1 ∗ ∀(α ∗A2).B2

D-ax
A ∗ax B

∆ ` A ∗ B

Fig. 6: Selected rules for disjointness

3.2 Disjointness

We now turn to another core judgment of F+
i —the disjointness relation, shown

in Fig. 6. The disjointness rules are mostly inherited from Fi [2], but the new
bottom type requires a notable change regarding disjointness with top-like types.

Top-like types. Top-like types are all types that are isomorphic to > (i.e., si-
multaneously sub- and supertypes of >). Hence, they are inhabited by a single
value, isomorphic to the > value. Fig. 6 captures this notion in a syntax-directed
fashion in the eAd predicate. As a historical note, the concept of top-like types
was already known by Barendregt et al. [3]. The λi calculus [36] re-discovered it
and coined the term “top-like types”; the Fi calculus [2] extended it with univer-
sal quantifiers. Note that in both calculi, top-like types are solely employed for
enabling a syntactic method of proving coherence, and due to the lack of BCD
subtyping, they do not have a type-theoretic interpretation of top-like types.

Disjointness rules. The disjointness judgment ∆ ` A ∗ B is helpful to check
whether the merge of two expressions of type A and B preserves coherence.
Incoherence arises when both expressions produce distinct values for the same
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Types τ ::= Int | 〈〉 | τ1 → τ2 | τ1 × τ2 | α | ∀α. τ
Terms e ::= x | i | 〈〉 | λx . e | e1 e2 | 〈e1, e2〉 | Λα. e | e τ | co e
Coercions co ::= id | co1 ◦ co2 | top | bot | co1 → co2 | 〈co1, co2〉 | π1 | π2

| co∀ | dist→ | top→ | top∀ | dist∀
Values v ::= i | 〈〉 | λx . e | 〈v1, v2〉 | Λα. e | (co1 → co2) v | co∀ v

| dist→ v | top→ v | top∀ v | dist∀ v
Term contexts Ψ ::= • | Ψ, x : τ
Type contexts Φ ::= • | Φ,α
Evaluation contexts E ::= [·] | E e | v E | 〈E , e〉 | 〈v , E〉 | co E | E τ

Fig. 7: Syntax of Fco

type, either directly when they are both of that same type, or through implicit
upcasting to a common supertype. Of course we can safely disregard top-like
types in this matter because they do not have two distinct values. In short, it
suffices to check that the two types have only top-like supertypes in common.

Because ⊥ and any another type A always have A as a common supertype,
it follows that ⊥ is only disjoint to A when A is top-like. More generally, if A is
a top-like type, then A is disjoint to any type. This is the rationale behind the
two rules D-topL and D-topR, which generalize and subsume ∆ ` > ∗ A and
∆ ` A ∗ > from Fi, and also cater to the bottom type. Two other interesting
rules are D-tvarL and D-tvarR, which dictate that a type variable α is disjoint
with some type B if its disjointness constraints A is a subtype of B . Disjointness
axioms A∗axB (appearing in rule D-ax) take care of two types with different type
constructors (e.g., Int and records). Axiom rules can be found in the appendix.
Finally we note that the disjointness relation is symmetric.

3.3 Elaboration and Type Safety

The dynamic semantics of F+
i is given by elaboration into a target calculus.

The target calculus Fco is the standard call-by-value System F extended with
products and coercions. The syntax of Fco is shown in Fig. 7.

Type translation. Definition 1 defines the type translation function | · | from
F+
i types A to Fco types τ . Most cases are straightforward. For example, ⊥

is mapped to an uninhabited type ∀α. α; disjoint quantification is mapped to
universal quantification, dropping the disjointness constraints. | · | is naturally
extended to work on contexts as well.

Definition 1. Type translation | · | is defined as follows:

|Int| = Int |>| = 〈〉 |A→ B | = |A| → |B |
|A & B | = |A| × |B | |{l : A}| = |A| |α| = α
|⊥| = ∀α. α |∀(α ∗A).B | = ∀α. |B |



Distributive Disjoint Polymorphism 15

e −→ e ′ (Single-step reduction)

r-forall

(co∀ v) τ −→ co (v τ)

r-topAll

(top∀ 〈〉) τ −→ 〈〉

r-distAll

(dist∀ 〈v1, v2〉) τ −→ 〈v1 τ, v2 τ〉

r-tapp

(Λα. e) τ −→ [τ/α]e

r-app

(λx . e) v −→ [v/x ]e

r-ctxt
e −→ e ′

E [e] −→ E [e ′]

Fig. 8: Selected reduction rules

Coercions and coercive subtyping. We follow prior work [5, 6] by having a syn-
tactic category for coercions [22]. In Fig. 7, we have several new coercions: bot,
co∀, dist∀ and top∀ due to the addition of polymorphism and bottom type. As
seen in Fig. 4 the coercive subtyping judgment has the form A <: B  co,
which says that the subtyping derivation for A <: B produces a coercion co that
converts terms of type |A| to |B |.

Fco static semantics. The typing rules of Fco are quite standard. We have one
rule t-capp regarding coercion application, which uses the judgment co :: τ . τ ′

to type coercions. We show two representative rules ct-forall and ct-bot.

t-capp
Φ;Ψ ` e : τ co :: τ . τ ′

Φ;Ψ ` co e : τ ′

ct-forall
co :: τ1 . τ2

co∀ :: ∀α. τ1 . ∀α. τ2

ct-bot

bot :: ∀α. α . τ

Fco dynamic semantics. The dynamic semantics of Fco is mostly unremarkable.
We write e −→ e ′ to mean one-step reduction. Figure 8 shows selected reduction
rules. The first line shows three representative rules regarding coercion reduc-
tions. They do not contribute to computation but merely rearrange coercions.
Our coercion reduction rules are quite standard but not efficient in terms of
space. Nevertheless, there is existing work on space-efficient coercions [23, 50],
which should be applicable to our work as well. Rule r-app is the usual β-rule
that performs actual computation, and rule r-ctxt handles reduction under an
evaluation context. As usual, −→∗ is the reflexive, transitive closure of −→. Now
we can show that Fco is type safe:

Theorem 1 (Preservation). If •; • ` e : τ and e −→ e ′, then •; • ` e ′ : τ .

Theorem 2 (Progress). If •; • ` e : τ , either e is a value, or ∃e ′. e −→ e ′.

Elaboration. Now consider the translation parts in Fig. 5. The key idea of the
translation follows the prior work [2, 5, 16, 36]: merges are elaborated to pairs
(rule T-merge); disjoint quantification and disjoint type applications (rules T-
tabs and T-tapp) are elaborated to regular universal quantification and type
applications, respectively. Finally, the following lemma connects F+

i to Fco:
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Lemma 2 (Elaboration soundness). We have that:

– If A <: B  co, then co :: |A| . |B |.
– If ∆;Γ ` E ⇒ A e, then |∆|; |Γ | ` e : |A|.
– If ∆;Γ ` E ⇐ A e, then |∆|; |Γ | ` e : |A|.

4 Algorithmic System and Decidability

The subtyping relation in Fig. 4 is highly non-algorithmic due to the presence of
a transitivity rule. This section presents an alternative algorithmic formulation.
Our algorithm extends that of λ+i , which itself was inspired by Pierce’s decision
procedure [38], to handle disjoint quantifiers and the bottom type. We then prove
that the algorithm is sound and complete with respect to declarative subtyping.

Additionally we prove that the subtyping and disjointness relations are de-
cidable. Although the proofs of this fact are fairly straightforward, it is nonethe-
less remarkable since it contrasts with the subtyping relation for (full) F<: [10],
which is undecidable [40]. Thus while bounded quantification is infamous for its
undecidability, disjoint quantification has the nicer property of being decidable.

4.1 Algorithmic Subtyping Rules

While Fig. 4 is a fine specification of how subtyping should behave, it cannot
be read directly as a subtyping algorithm for two reasons: (1) the conclusions
of rules S-refl and S-trans overlap with the other rules, and (2) the premises
of rule S-trans mention a type that does not appear in the conclusion. Simply
dropping the two offending rules from the system is not possible without losing
expressivity [29]. Thus we need a different approach. Following λ+i , we intend
the algorithmic judgment Q ` A <: B to be equivalent to A <: Q ⇒ B , where Q
is a queue used to track record labels, domain types and disjointness constraints.
The full rules of the algorithmic subtyping of F+

i are shown Fig. 9.

Definition 2 (Q ::= [] | l ,Q | B ,Q | α ∗ B ,Q). Q ⇒ A is defined as follows:

[]⇒ A = A (B ,Q)⇒ A = B → (Q ⇒ A)
(l ,Q)⇒ A = {l : Q ⇒ A} (α ∗ B ,Q)⇒ A = ∀(α ∗ B).Q ⇒ A

For brevity of the algorithm, we use metavariable c to mean type constants:

Type Constants c ::= Int | ⊥ | α

The basic idea of Q ` A <: B is to perform a case analysis on B until it reaches
type constants. We explain new rules regarding disjoint quantification and the
bottom type. When a quantifier is encountered in B , rule A-forall pushes the
type variables with its disjointness constraints onto Q and continue with the
body. Correspondingly, in rule A-allConst, when a quantifier is encountered
in A, and the head of Q is a type variable, this variable is popped out and we
continue with the body. Rule A-bot is similar to its declarative counterpart.
Two meta-functions JQK> and JQK& are meant to generate correct forms of
coercions, and their definitions are shown in the appendix. For other algorithmic
rules, we refer to λ+i [5] for detailed explanations.
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Q ` A <: B  co (Algorithmic subtyping)

A-top

Q ` A <: >  JQK> ◦ top

A-and
Q ` A <: B1  co1 Q ` A <: B2  co2

Q ` A <: B1 & B2  JQK& ◦ 〈co1, co2〉

A-arr
Q,B1 ` A <: B2  co

Q ` A <: B1 → B2  co

A-rcd
Q, l ` A <: B  co

Q ` A <: {l : B}  co

A-forall
Q, α ∗ B1 ` A <: B2  co

Q ` A <: ∀(α ∗ B1).B2  co

A-const

[] ` c <: c  id

A-bot

Q ` ⊥ <: c  bot

A-arrConst
[] ` A <: A1  co1 Q ` A2 <: c  co2

A,Q ` A1 → A2 <: c  co1 → co2

A-rcdConst
Q ` A <: c  co

l ,Q ` {l : A} <: c  co

A-andConst
Q ` Ai <: c  co i ∈ {1, 2}
Q ` A1 & A2 <: c  co ◦ πi

A-allConst
[] ` A <: A1 Q ` A2 <: c  co

(α ∗A,Q) ` ∀(α ∗A1).A2 <: c  co∀

Fig. 9: Algorithmic subtyping

Correctness of the algorithm. We prove that the algorithm is sound and complete
with respect to the specification. We refer the reader to our Coq formalization
for more details. We only show the two major theorems:

Theorem 3 (Soundness). If Q ` A <: B  co then A <: Q ⇒ B  co.

Theorem 4 (Completeness). If A <: B  co, then ∃co′. [] ` A <: B  co′.

4.2 Decidability

Moreover, we prove that our algorithmic type system is decidable. To see this,
first notice that the bidirectional type system is syntax-directed, so we only need
to show decidability of algorithmic subtyping and disjointness. The full (manual)
proofs for decidability can be found in the appendix.

Lemma 3 (Decidability of algorithmic subtyping). Given Q, A and B,
it is decidable whether there exists co, such that Q ` A <: B  co.

Lemma 4 (Decidability of disjointness checking). Given ∆, A and B,
it is decidable whether ∆ ` A ∗ B.



18 X. Bi et al.

One interesting observation here is that although our disjointness quantifi-
cation has a similar shape to bounded quantification ∀(α <: A).B in F<: [10],
subtyping for F<: is undecidable [40]. In F<:, the subtyping relation between
bounded quantification is:

∆ ` A2 <: A1 ∆,α <: A2 ` B1 <: B2

∆ ` ∀(α <: A1).B1 <: ∀(α <: A2).B2

fsub-forall

Compared with rule S-forall, both rules are contravariant on bounded/dis-
joint types, and covariant on the body. However, with bounded quantification it
is fundamental to track the bounds in the environment, which complicates the
design of the rules and makes subtyping undecidable with rule fsub-forall.
Decidability can be recovered by employing an invariant rule for bounded quan-
tification (that is by forcing A1 and A2 to be identical). Disjoint quantification
does not require such invariant rule for decidability.

5 Establishing Coherence for F+
i

In this section, we establish the coherence property for F+
i . The proof strategy

mostly follows that of λ+i , but the construction of the heterogeneous logical re-
lation is significantly more complicated. Firstly in Section 5.1 we discuss why
adding BCD subtyping to disjoint polymorphism introduces significant com-
plications. In Section 5.2, we discuss why a natural extension of System F’s
logical relation to deal with disjoint polymorphism fails. The technical difficulty
is well-foundedness, stemming from the interaction between impredicativity and
disjointness. Finally in Section 5.3, we present our (predicative) logical relation
that is specially crafted to prove coherence for F+

i .

5.1 The Challenge

Before we tackle the coherence of F+
i , let us first consider how Fi (and its prede-

cessor λi) enforces coherence. Its essentially syntactic approach is to make sure
that there is at most one subtyping derivation for any two types. As an immedi-
ate consequence, the produced coercions are uniquely determined and thus the
calculus is clearly coherent. Key to this approach is the invariant that the type
system only produces disjoint intersection types. As we mentioned in Section 3,
this invariant complicates the calculus and its metatheory, and leads to a weaker
substitution lemma. Moreover, the syntactic coherence approach is incompat-
ible with BCD subtyping, which leads to multiple subtyping derivations with
different coercions and requires a more general substitution lemma. To accom-
modate BCD into λi, Bi et al. [5] have created the λ+i calculus and developed a
semantically-founded proof method based on logical relations. Because λ+i does
not feature polymorphism, the problem at hand is to incorporate support for
polymorphism in this semantic approach to coherence, which turns out to be
more challenging than is apparent.
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(v1, v2) ∈ VJInt; IntK , ∃i . v1 = v2 = i

(v1, v2) ∈ VJτ1 → τ2; τ ′1 → τ ′2K , ∀(v , v ′) ∈ VJτ1; τ ′1K. (v1 v , v2 v ′) ∈ EJτ2; τ ′2K
(〈v1, v2〉, v3) ∈ VJτ1 × τ2; τ3K , (v1, v3) ∈ VJτ1; τ3K ∧ (v2, v3) ∈ VJτ2; τ3K
(v3, 〈v1, v2〉) ∈ VJτ3; τ1 × τ2K , (v3, v1) ∈ VJτ3; τ1K ∧ (v3, v2) ∈ VJτ3; τ2K

Fig. 10: Selected cases from λ+i ’s canonicity relation

5.2 Impredicativity and Disjointness at Odds

Figure 10 shows selected cases of canonicity, which is λ+i ’s (heterogeneous) logical
relation used in the coherence proof. The definition captures that two values v1
and v2 of types τ1 and τ2 are in VJτ1; τ2K iff either the types are disjoint or
the types are equal and the values are semantically equivalent. Because both
alternatives entail coherence, canonicity is key to λ+i ’s coherence proof.

Well-foundedness issues. For F+
i , we need to extend canonicity with additional

cases to account for universally quantified types. For reasons that will become
clear in Section 5.3, the type indices become source types (rather than target
types as in Fig. 10). A naive formulation of one case rule is:

(v1, v2) ∈ VJ∀(α ∗A1).B1; ∀(α ∗A2).B2K ,
∀C1 ∗A1,C2 ∗A2. (v1 |C1|, v2 |C2|) ∈ EJ[C1/α]B1; [C2/α]B2K

This case is problematic because it destroys the well-foundedness of λ+i ’s logical
relation, which is based on structural induction on the type indices. Indeed, the
type [C1/α]B1 may well be larger than ∀(α ∗A1).B1.

However, System F’s well-known parametricity logical relation [43] provides
us with a means to avoid this problem. Rather than performing the type sub-
stitution immediately as in the above rule, we can defer it to a later point by
adding it to an extra parameter ρ of the relation, which accumulates the deferred
substitutions. This yields a modified rule where the type indices in the recursive
occurrences are indeed smaller:

(v1, v2) ∈ VJ∀(α ∗A1).B1; ∀(α ∗A2).B2Kρ ,
∀C1 ∗A1,C2 ∗A2.(v1 |C1|, v2 |C2|) ∈ EJB1; B2Kρ[α7→(C1,C2)]

Of course, the deferred substitution has to be performed eventually, to be precise
when the type indices are type variables.

(v1, v2) ∈ VJα;αKρ , (v1, v2) ∈ VJρ1(α); ρ2(α)K∅
Unfortunately, this way we have not only moved the type substitution to the
type variable case, but also the ill-foundedness problem. Indeed, this problem is
also present in System F. The standard solution is to not fix the relation R by
which values at type α are related to VJρ1(α); ρ2(α)K, but instead to make it a
parameter that is tracked by ρ. This yields the following two rules for disjoint
quantification and type variables:

(v1, v2) ∈ VJ∀(α ∗A1).B1; ∀(α ∗A2).B2Kρ , ∀C1 ∗A1,C2 ∗A2,R ⊆ C1 × C2.

(v1 |C1|, v2 |C2|) ∈ EJB1; B2Kρ[α7→(C1,C2,R)]

(v1, v2) ∈ VJα;αKρ , (v1, v2) ∈ ρR(α)
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Now we have finally recovered the well-foundedness of the relation. It is again
structurally inductive on the size of the type indexes.

Heterogeneous issues. We have not yet accounted for one major difference be-
tween the parametricity relation, from which we have borrowed ideas, and the
canonicity relation, to which we have been adding. The former is homogeneous
(i.e., the types of the two values is the same) and therefore has one type in-
dex, while the latter is heterogeneous (i.e., the two values may have different
types) and therefore has two type indices. Thus we must also consider cases like
VJα; IntK. A definition that seems to handle this case appropriately is:

(v1, v2) ∈ VJα; IntKρ , (v1, v2) ∈ VJρ1(α); IntK∅ (1)

Here is an example to motivate it. Let E = Λ(α∗>). ((λx . x ) : α& Int→ α& Int).
We expect that E Int 1 evaluates to 〈1, 1〉. To prove that, we need to show (1, 1) ∈
VJα; IntK[α7→(Int,Int,R)]. According to Eq. (1), this is indeed the case. However, we
run into ill-foundedness issue again, because ρ1(α) could be larger than α. Alas,
this time the parametricity relation has no solution for us.

5.3 The Canonicity Relation for F+
i

In light of the fact that substitution in the logical relation seems unavoidable
in our setting, and that impredicativity is at odds with substitution, we turn to
predicativity : we change rule T-tapp to its predicative version:

∆;Γ ` E ⇒ ∀(α ∗ B).C  e ∆ ` t ∗ B

∆;Γ ` E t ⇒ [t/α]C  e |t |
T-tappMono

where metavariable t ranges over monotypes (types minus disjoint quantifica-
tion). We do not believe that predicativity is a severe restriction in practice,
since many source languages (e.g., those based on the Hindley-Milner type sys-
tem [24, 32] like Haskell and OCaml) are themselves predicative and do not
require the full generality of an impredicative core language.

Luckily, substitution with monotypes does not prevent well-foundedness. Fig-
ure 11 defines the canonicity relation for F+

i . The canonicity relation is a family
of binary relations over Fco values that are heterogeneous, i.e., indexed by two F+

i

types. Two points are worth mentioning. (1) An apparent difference from λ+i ’s
logical relation is that our relation is now indexed by source types. The reason is
that the type translation function (Definition 1) discards disjointness constraints,
which are crucial in our setting, whereas λ+i ’s type translation does not have in-
formation loss. (2) Heterogeneity allows relating values of different types, and in
particular values whose types are disjoint. The rationale behind the canonicity
relation is to combine equality checking from traditional (homogeneous) logical
relations with disjointness checking. It consists of two relations: the value rela-
tion VJA; BK relates closed values; and the expression relation EJA; BK—defined
in terms of the value relation—relates closed expressions.

The relation VJA; BK is defined by induction on the structures of A and B .
For integers, it requires the two values to be literally the same. For two records to
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(v1, v2) ∈ VJInt; IntK , ∃i . v1 = v2 = i

(v1, v2) ∈ VJ{l : A}; {l : B}K , (v1, v2) ∈ VJA; BK
(v1, v2) ∈ VJA1 → B1; A2 → B2K , ∀(v ′2, v

′
1) ∈ VJA2; A1K. (v1 v ′1, v2 v ′2) ∈ EJB1; B2K

(〈v1, v2〉, v3) ∈ VJA & B ; C K , (v1, v3) ∈ VJA; C K ∧ (v2, v3) ∈ VJB ; C K
(v3, 〈v1, v2〉) ∈ VJC ; A & BK , (v3, v1) ∈ VJC ; AK ∧ (v3, v2) ∈ VJC ; BK

(v1, v2) ∈ VJ∀(α ∗A1).B1;∀(α ∗A2).B2K , ∀• ` t ∗A1 & A2. (v1 |t |, v2 |t |) ∈ EJ[t/α]B1; [t/α]B2K
(v1, v2) ∈ VJA; BK , true otherwise

(e1, e2) ∈ EJA; BK , ∃v1, v2. e1 −→∗ v1 ∧ e2 −→∗ v2 ∧ (v1, v2) ∈ VJA; BK

ρ ∈ DJ∆K , ∅ ∈ DJ•K
ρ ∈ DJ∆K • ` t ∗ ρ(B)

ρ[α 7→ t ] ∈ DJ∆,α ∗ BK

(γ1, γ2) ∈ GJΓ Kρ , (∅, ∅) ∈ GJ•Kρ
(γ1, γ2) ∈ GJΓ Kρ (v1, v2) ∈ VJρ(A); ρ(A)K

(γ1[x 7→ v1], γ2[x 7→ v2]) ∈ GJΓ, x : AKρ

Fig. 11: The canonicity relation for F+
i

behave the same, their fields must behave the same. For two functions to behave
the same, they are required to produce outputs related at B1 and B2 when given
related inputs at A1 and A2. For the next two cases regarding intersection types,
the relation distributes over intersection constructor & . Of particular interest is
the case for disjoint quantification. Notice that it does not quantify over arbitrary
relations, but directly substitutes α with monotype t in B1 and B2. This means
that our canonicity relation does not entail parametricity. However, it suffices
for our purposes to prove coherence. Another noticeable thing is that we keep
the invariant that A and B are closed types throughout the relation, so we no
longer need to consider type variables. This simplifies things a lot. Note that
when one type is ⊥, two values are vacuously related because there simply are
no values of type ⊥. We need to show that the relation is indeed well-founded:

Lemma 5 (Well-foundedness). The canonicity relation of F+
i is well-founded.

Proof. Let | · |∀ and | · |s be the number of ∀-quantifies and the size of types,
respectively. Consider the measure 〈| · |∀, | · |s〉, where 〈. . . 〉 denotes lexicographic
order. For the case of disjoint quantification, the number of ∀-quantifiers de-
creases. For the other cases, the measure of | · |∀ does not increase, and the
measure of | · |s strictly decreases. ut

5.4 Establishing Coherence

Logical equivalence. The canonicity relation can be lifted to open expressions in
the standard way, i.e., by considering all possible interpretations of free type and
term variables. The logical interpretations of type and term contexts are found
in the bottom half of Fig. 11.
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Definition 3 (Logical equivalence wlog).

∆;Γ ` e1 wlog e2 : A; B , |∆|; |Γ | ` e1 : |A| ∧ |∆|; |Γ | ` e2 : |B | ∧
(∀ρ, γ1, γ2. ρ ∈ DJ∆K ∧ (γ1, γ2) ∈ GJΓ Kρ =⇒ (γ1(ρ1(e1)), γ2(ρ2(e2))) ∈ EJρ(A); ρ(B)K)

For conciseness, we write ∆;Γ ` e1 wlog e2 : A to mean ∆;Γ ` e1 wlog e2 : A; A.

Contextual equivalence. Following λ+i , the notion of coherence is based on contex-
tual equivalence. The intuition is that two programs are equivalent if we cannot
tell them apart in any context. As usual, contextual equivalence is expressed
using expression contexts (C and D denote F+

i and Fco expression contexts,
respectively), Due to the bidirectional nature of the type system, the typing
judgment of C features 4 different forms (full rules are in the appendix), e.g.,
C : (∆;Γ ⇒ A) 7→ (∆′;Γ ′ ⇒ A′)  D reads if ∆;Γ ` E ⇒ A then
∆′;Γ ′ ` C{E} ⇒ A′. The judgment also generates a well-typed Fco context
D. The following two definitions capture the notion of contextual equivalence:

Definition 4 (Kleene Equality w). Two complete programs (i.e., closed terms
of type Int), e and e ′, are Kleene equal, written e w e ′, iff there exists an integer
i such that e −→∗ i and e ′ −→∗ i.

Definition 5 (Contextual Equivalence wctx).

∆;Γ ` E1 wctx E2 : A , ∀e1, e2. ∆;Γ ` E1 ⇒ A e1 ∧∆;Γ ` E2 ⇒ A e2 ∧
(∀C ,D. C : (∆;Γ ⇒ A) 7→ (•; • ⇒ Int) D =⇒ D{e1} w D{e2})

Coherence. For space reasons, we directly show the coherence statement of F+
i .

We need several technical lemmas such as compatibility lemmas, fundamental
property, etc. The interested reader can refer to our Coq formalization.

Theorem 5 (Coherence). We have that

– If ∆;Γ ` E ⇒ A then ∆;Γ ` E wctx E : A.
– If ∆;Γ ` E ⇐ A then ∆;Γ ` E wctx E : A.

That is, coherence is a special case of Definition 5 where E1 and E2 are the same.
At first glance, this appears underwhelming: of course E behaves the same as
itself! The tricky part is that, if we expand it according to Definition 5, it is not
E itself but all its translations e1 and e2 that behave the same!

6 Related Work

Coherence. In calculi featuring coercive subtyping, a semantics that interprets
the subtyping judgment by introducing explicit coercions is typically defined on
typing derivations rather than on typing judgments. A natural question that
arises for such systems is whether the semantics is coherent, i.e., distinct typ-
ing derivations of the same typing judgment possess the same meaning. Since
Reynolds [45] proved the coherence of a calculus with intersection types, many
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researchers have studied the problem of coherence in a variety of typed calculi.
Two approaches are commonly found in the literature. The first approach is to
find a normal form for a representation of the derivation and show that normal
forms are unique for a given typing judgment [8, 15, 47]. However, this approach
cannot be directly applied to Curry-style calculi (where the lambda abstractions
are not type annotated). Biernacki and Polesiuk [6] considered the coherence
problem of coercion semantics. Their criterion for coherence of the translation
is contextual equivalence in the target calculus. Inspired by this approach, Bi et
al. [5] proposed the canonicity relation to prove coherence for a calculus with
disjoint intersection types and BCD subtyping. As we have shown in Section 5,
constructing a suitable logical relation for F+

i is challenging. On the one hand,
the original approach by Alpuim et al. [2] in Fi does not work any more due to
the addition of BCD subtyping. On the other hand, simply combining System
F’s logical relation with λ+i ’s canonicity relation does not work as expected, due
to the issue of well-foundedness. To solve the problem, we employ immediate
substitutions and a restriction to predicative instantiations.

BCD subtyping and decidability. The BCD type system was first introduced
by Barendregt et al. [3] to characterize exactly the strongly normalizing terms.
The BCD type system features a powerful subtyping relation, which serves as
a base for our subtyping relation. The decidability of BCD subtyping has been
shown in several works [27, 38, 41, 51]. Laurent [28] formalized the relation in
Coq in order to eliminate transitivity cuts from it, but his formalization does
not deliver an algorithm. Only recently, Laurent [30] presented a general way
of defining a BCD-like subtyping relation extended with generic contravariant/-
covariant type constructors that enjoys the “sub-formula property”. Our Coq
formalization extends the approach used in λ+i , which follows a different idea
based on Pierce’s decision procedure [38], with parametric (disjoint) polymor-
phism and corresponding distributivity rules. More recently, Muehlboeck and
Tate [34] presented a decidable algorithmic system (proved in Coq) with union
and intersection types. Similar to F+

i , their system also has distributive subtyping
rules. They also discussed the addition of polymorphism, but left a Coq formal-
ization for future work. In their work they regard intersections of disjoint types
(e.g., String& Int) as uninhabitable, which is different from our interpretation.
As a consequence, coherence is a non-issue for them.

Intersection types, the merge operator and polymorphism. Forsythe [44] has in-
tersection types and a merge-like operator. However to ensure coherence, various
restrictions were added to limit the use of merges. In Forsythe merges cannot
contain more than one function. Castagna et al. [12] proposed a coherent cal-
culus λ& to study overloaded functions. λ& has a special merge operator that
works on functions only. Dunfield proposed a calculus [16] (which we call λ,,)
that shows significant expressiveness of type systems with unrestricted intersec-
tion types and an (unrestricted) merge operator. However, because of his unre-
stricted merge operator (allowing 1 , , 2), his calculus lacks coherence. Blaauw-
broek’s λ∨∧ [7] enriched λ,, with BCD subtyping and computational effects, but
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λ,, [16] λi [36] λ∨∧ [7] λ+
i [5] Fi [2] F+

i

Disjointness
Unrestricted intersections
BCD subtyping
Polymorphism
Coherence
Bottom type

Fig. 12: Summary of intersection calculi ( = yes, = no, = syntactic coherence)

he did not address coherence. The coherence issue for a calculus similar to λ,,
was first addressed in λi [36] with the notion of disjointness, but at the cost
of dropping unrestricted intersections, and a strict notion of coherence (based
on α-equivalence). Later Bi et al. [5] improved calculi with disjoint intersection
types by removing several restrictions, adopted BCD subtyping and a semantic
notion of coherence (based on contextual equivalence) proved using canonicity.
The combination of intersection types, a merge operator and parametric poly-
morphism, while achieving coherence was first studied in Fi [2], which serves as
a foundation for F+

i . However, Fi suffered the same problems as λi. Additionally
in Fi a bottom type is problematic due to interactions with disjoint polymor-
phism and the lack of unrestricted intersections. The issues can be illustrated
with the well-typed F+

i expression Λ(α ∗⊥). λx : α. x , , x . In this expression the
type of x , , x is α&α. Such a merge does not violate disjointness because the
only types that α can be instantiated with are top-like, and top-like types do not
introduce incoherence. In Fi a type variable α can never be disjoint to another
type that contains α, but (as the previous expression shows) the addition of a
bottom type allows expressions where such (strict) condition does not hold. In
this work, we removed those restrictions, extended BCD subtyping with poly-
morphism, and proposed a more powerful logical relation for proving coherence.
Figure 12 summarizes the main differences between the aforementioned calculi.

There are also several other calculi with intersections and polymorphism.
Pierce proposed F∧ [39], a calculus combining intersection types and bounded
quantification. Pierce translates F∧ to System F extended with products, but
he left coherence as a conjecture. More recently, Castagna et al. [14] proposed a
polymorphic calculus with set-theoretic type connectives (intersections, unions,
negations). But their calculus does not include a merge operator. Castagna and
Lanvin also proposed a gradual type system [13] with intersection and union
types, but also without a merge operator.

Row polymorphism and bounded polymorphism. Row polymorphism was origi-
nally proposed by Wand [54] as a mechanism to enable type inference for a sim-
ple object-oriented language based on recursive records. These ideas were later
adopted into type systems for extensible records [19, 21, 31]. Our merge operator
can be seen as a generalization of record extension/concatenation, and selection
is also built-in. In contrast to most record calculi, restriction is not a primitive
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operation in F+
i , but can be simulated via subtyping. Disjoint quantification can

simulate the lacks predicate often present in systems with row polymorphism.
Recently Morris and McKinna presented a typed language [33], generalizing and
abstracting existing systems of row types and row polymorphism. Alpuim et
al. [2] informally studied the relationship between row polymorphism and dis-
joint polymorphism, but it would be interesting to study such relationship more
formally. The work of Morris and McKinna may be interesting for such study in
that it gives a general framework for row type systems.

Bounded quantification is currently the dominant mechanism in major main-
stream object-oriented languages supporting both subtyping and polymorphism.
F<: [10] provides a simple model for bounded quantification, but type-checking
in full F<: is proved to be undecidable [40]. Pierce’s thesis [39] discussed the re-
lationship between calculi with simple polymorphism and intersection types and
bounded quantification. He observed that there is a way to “encode” many forms
of bounded quantification in a system with intersections and pure (unbounded)
second-order polymorphism. That encoding can be easily adapted to F+

i :

∀(α <: A).B , ∀(α ∗ >). ([A &α/α]B)

The idea is to replace bounded quantification by (unrestricted) universal quan-
tification and all occurrences of α by A &α in the body. Such an encoding seems
to indicate that F+

i could be used as a decidable alternative to (full) F<:. It
is worthwhile to note that this encoding does not work in Fi because A &α is
not well-formed (α is not disjoint to A). In other words, the encoding requires
unrestricted intersections.

7 Conclusion and Future Work

We have proposed F+
i , a type-safe and coherent calculus with disjoint intersection

types, BCD subtyping and parametric polymorphism. F+
i improves the state-of-

art of compositional designs, and enables the development of highly modular and
reusable programs. One interesting and useful further extension would be im-
plicit polymorphism. For that we want to combine Dunfield and Krishnaswami’s
approach [17] with our bidirectional type system. We would also like to study the
parametricity of F+

i . As we have seen in Section 5.2, it is not at all obvious how
to extend the standard logical relation of System F to account for disjointness,
and avoid potential circularity due to impredicativity. A promising solution is
to use step-indexed logical relations [1].
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A Full Typing Rules of F+
i

` ∆ (Well-formedness)

swfte-empty

` •

swfte-var
` ∆ ∆ ` A

` ∆,α ∗A

∆ ` Γ (Well-formedness)

swfe-empty

∆ ` •

swfe-var
∆ ` Γ ∆ ` A

∆ ` Γ, x : A

∆ ` A (Well-formedness of type)

swft-top

∆ ` >

swft-bot

∆ ` ⊥

swft-nat

∆ ` Int

swft-var
(α ∗A) ∈ ∆
∆ ` α

swft-rcd
∆ ` A

∆ ` {l : A}

swft-arrow
∆ ` A ∆ ` B

∆ ` A→ B

swft-all
∆ ` A ∆,α ∗A ` B

∆ ` ∀(α ∗A).B

swft-and
∆ ` A ∆ ` B

∆ ` A & B

A <: B  co (Declarative subtyping)

S-refl

A <: A id

S-trans
A2 <: A3  co1 A1 <: A2  co2

A1 <: A3  co1 ◦ co2

S-top

A <: > top

S-rcd
A <: B  co

{l : A} <: {l : B} co

S-andl

A1 & A2 <: A1  π1

S-andr

A1 & A2 <: A2  π2

S-arr
B1 <: A1  co1 A2 <: B2  co2

A1 → A2 <: B1 → B2  co1 → co2

S-and
A1 <: A2  co1 A1 <: A3  co2

A1 <: A2 & A3  〈co1, co2〉

S-distArr

(A1 → A2) & (A1 → A3) <: A1 → A2 & A3  dist→

S-topArr

> <: > → > top→

S-distRcd

{l : A}& {l : B} <: {l : A & B} id

S-topRcd

> <: {l : >} id

S-bot

⊥ <: A bot
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S-forall
B1 <: B2  co A2 <: A1

∀(α ∗A1).B1 <: ∀(α ∗A2).B2  co∀

S-topAll

> <: ∀(α ∗ >).> top∀

S-distAll

(∀(α ∗A).B1) & (∀(α ∗A).B2) <: ∀(α ∗A).B1 & B2  dist∀

eAd (Top-like types)

TL-top

e>d

TL-and
eAd eBd
eA & Bd

TL-arr
eBd

eA→ Bd

TL-rcd
eAd

e{l : A}d

TL-all
eBd

e∀(α ∗A).Bd

∆ ` A ∗ B (Disjointness)

D-topL
eAd

∆ ` A ∗ B

D-topR
eBd

∆ ` A ∗ B

D-arr
∆ ` A2 ∗ B2

∆ ` A1 → A2 ∗ B1 → B2

D-andL
∆ ` A1 ∗ B ∆ ` A2 ∗ B

∆ ` A1 & A2 ∗ B

D-andR
∆ ` A ∗ B1 ∆ ` A ∗ B2

∆ ` A ∗ B1 & B2

D-rcdEq

∆ ` A ∗ B

∆ ` {l : A} ∗ {l : B}

D-rcdNeq

l1 6= l2

∆ ` {l1 : A} ∗ {l2 : B}

D-tvarL
(α ∗A) ∈ ∆ A <: B

∆ ` α ∗ B

D-tvarR
(α ∗A) ∈ ∆ A <: B

∆ ` B ∗ α

D-forall
∆,α ∗A1 & A2 ` B1 ∗ B2

∆ ` ∀(α ∗A1).B1 ∗ ∀(α ∗A2).B2

D-ax
A ∗ax B

∆ ` A ∗ B

A ∗ax B (Disjointness Axiom)

Dax-intArr

Int ∗ax A1 → A2

Dax-intRcd

Int ∗ax {l : A}

Dax-intAll

Int ∗ax ∀(α ∗ B1).B2

Dax-arrAll

A1 → A2 ∗ax ∀(α ∗ B1).B2

Dax-arrRcd

A1 → A2 ∗ax {l : B}

Dax-allRcd

∀(α ∗A1).A2 ∗ax {l : B}
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Note: For each form A ∗ax B , we also have a symmetric one B ∗ax A.

∆;Γ ` E ⇒ A e (Inference)

T-top
` ∆ ∆ ` Γ

∆;Γ ` > ⇒ > 〈〉

T-nat
` ∆ ∆ ` Γ

∆;Γ ` i⇒ Int i

T-var
` ∆ ∆ ` Γ (x : A) ∈ Γ

∆;Γ ` x ⇒ A x

T-app
∆;Γ ` E1 ⇒ A1 → A2  e1

∆;Γ ` E2 ⇐ A1  e2

∆;Γ ` E1 E2 ⇒ A2  e1 e2

T-merge
∆;Γ ` E1 ⇒ A1  e1

∆;Γ ` E2 ⇒ A2  e2 ∆ ` A1 ∗A2

∆;Γ ` E1 , , E2 ⇒ A1 & A2  〈e1, e2〉

T-anno
∆;Γ ` E ⇐ A e

∆;Γ ` E : A⇒ A e

T-tabs
∆,α ∗A;Γ ` E ⇒ B  e

∆ ` A ∆ ` Γ
∆;Γ ` Λ(α ∗A).E ⇒ ∀(α ∗A).B  Λα. e

T-tapp
∆;Γ ` E ⇒ ∀(α ∗ B).C  e ∆ ` A ∗ B

∆;Γ ` E A⇒ [A/α]C  e |A|

T-rcd
∆;Γ ` E ⇒ A e

∆;Γ ` {l = E} ⇒ {l : A} e

T-proj
∆;Γ ` E ⇒ {l : A} e

∆;Γ ` E .l ⇒ A e

∆;Γ ` E ⇐ A e (Checking)

T-abs
∆ ` A ∆;Γ, x : A ` E ⇐ B  e

∆;Γ ` λx .E ⇐ A→ B  λx . e

T-sub
∆;Γ ` E ⇒ B  e B <: A co

∆;Γ ` E ⇐ A co e
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Definition 6.

J[]K> = top

Jl ,QK> = JQK> ◦ id
JA,QK> = (top→ JQK>) ◦ top→

Jα ∗A,QK> = JQK>∀ ◦ top∀

J[]K& = id

Jl ,QK& = JQK& ◦ id
JA,QK& = (id→ JQK&) ◦ dist→

Jα ∗A,QK& = JQK&∀ ◦ dist∀

Q ` A <: B  co (Algorithmic subtyping)

A-const

[] ` c <: c id

A-top

Q ` A <: > JQK> ◦ top

A-bot

Q ` ⊥ <: c bot

A-and
Q ` A <: B1  co1 Q ` A <: B2  co2

Q ` A <: B1 & B2  JQK& ◦ 〈co1, co2〉

A-arr
Q,B1 ` A <: B2  co

Q ` A <: B1 → B2  co

A-rcd
Q, l ` A <: B  co

Q ` A <: {l : B} co

A-forall
Q, α ∗ B1 ` A <: B2  co

Q ` A <: ∀(α ∗ B1).B2  co

A-arrConst
[] ` A <: A1  co1 Q ` A2 <: c co2

A,Q ` A1 → A2 <: c co1 → co2

A-rcdConst
Q ` A <: c co

l ,Q ` {l : A} <: c co

A-andConst
Q ` Ai <: c co i ∈ {1, 2}
Q ` A1 & A2 <: c co ◦ πi

A-allConst
[] ` A <: A1 Q ` A2 <: c co

(α ∗A,Q) ` ∀(α ∗A1).A2 <: c co∀

C : (∆;Γ ⇒ A) 7→ (∆′;Γ ′ ⇒ B) D (Context typing I)

CTyp-empty1

[·] : (∆;Γ ⇒ A) 7→ (∆;Γ ⇒ A) [·]

CTyp-appL1
C : (∆;Γ ⇒ A) 7→ (∆′;Γ ′ ⇒ A1 → A2) D

∆′;Γ ′ ` E2 ⇐ A1  e

C E2 : (∆;Γ ⇒ A) 7→ (∆′;Γ ′ ⇒ A2) D e
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CTyp-appR1
C : (∆;Γ ⇒ A) 7→ (∆′;Γ ′ ⇐ A1) D

∆′;Γ ′ ` E1 ⇒ A1 → A2  e

E1 C : (∆;Γ ⇒ A) 7→ (∆′;Γ ′ ⇒ A2) e D

CTyp-mergeL1
C : (∆;Γ ⇒ A) 7→ (∆′;Γ ′ ⇒ A1) D
∆′;Γ ′ ` E2 ⇒ A2  e ∆′ ` A1 ∗A2

C, ,E2 : (∆;Γ ⇒ A) 7→ (∆′;Γ ′ ⇒ A1 & A2) 〈D, e〉

CTyp-mergeR1
C : (∆;Γ ⇒ A) 7→ (∆′;Γ ′ ⇒ A2) D
∆′;Γ ′ ` E1 ⇒ A1  e ∆′ ` A1 ∗A2

E1, , C : (∆;Γ ⇒ A) 7→ (∆′;Γ ′ ⇒ A1 & A2) 〈e,D〉

CTyp-rcd1
C : (∆;Γ ⇒ A) 7→ (∆′;Γ ′ ⇒ B) D

{l = C} : (∆;Γ ⇒ A) 7→ (∆′;Γ ′ ⇒ {l : B}) D

CTyp-proj1
C : (∆;Γ ⇒ A) 7→ (∆′;Γ ′ ⇒ {l : B}) D
C.l : (∆;Γ ⇒ A) 7→ (∆′;Γ ′ ⇒ B) D

CTyp-anno1
C : (∆;Γ ⇒ B) 7→ (∆′;Γ ′ ⇐ A) D
C : A : (∆;Γ ⇒ B) 7→ (∆′;Γ ′ ⇒ A) D

CTyp-tabs1
C : (∆;Γ ⇒ A) 7→ (∆′, α ∗ B ;Γ ′ ⇒ B ′) D

∆′ ` B ∆′ ` Γ ′

Λ(α ∗ B). C : (∆;Γ ⇒ A) 7→ (∆′;Γ ′ ⇒ ∀(α ∗ B).B ′) Λα.D

CTyp-tapp1
C : (∆;Γ ⇒ A) 7→ (∆′;Γ ′ ⇒ ∀(α ∗A1).A2) D

∆′ ` B ∆′ ` B ∗A1

C B : (∆;Γ ⇒ A) 7→ (∆′;Γ ′ ⇒ [B/α]A2) D |B |

C : (∆;Γ ⇐ A) 7→ (∆′;Γ ′ ⇐ B) D (Context typing II)

CTyp-empty2

[·] : (∆;Γ ⇐ A) 7→ (∆;Γ ⇐ A) [·]

CTyp-abs2
C : (∆;Γ ⇐ A) 7→ (∆′;Γ ′, x : A1 ⇐ A2) D

∆′ ` A1

λx . C : (∆;Γ ⇐ A) 7→ (∆′;Γ ′ ⇐ A1 → A2) λx .D



34 X. Bi et al.

C : (∆;Γ ⇐ A) 7→ (∆′;Γ ′ ⇒ B) D (Context typing III)

CTyp-appL2
C : (∆;Γ ⇐ A) 7→ (∆′;Γ ′ ⇒ A1 → A2) D

∆′;Γ ′ ` E2 ⇐ A1  e

C E2 : (∆;Γ ⇐ A) 7→ (∆′;Γ ′ ⇒ A2) D e

CTyp-appR2
C : (∆;Γ ⇐ A) 7→ (∆′;Γ ′ ⇐ A1) D

∆′;Γ ′ ` E1 ⇒ A1 → A2  e

E1 C : (∆;Γ ⇐ A) 7→ (∆′;Γ ′ ⇒ A2) e D

CTyp-mergeL2
C : (∆;Γ ⇐ A) 7→ (∆′;Γ ′ ⇒ A1) D
∆′;Γ ′ ` E2 ⇒ A2  e ∆′ ` A1 ∗A2

C, ,E2 : (∆;Γ ⇐ A) 7→ (∆′;Γ ′ ⇒ A1 & A2) 〈D, e〉

CTyp-mergeR2
C : (∆;Γ ⇐ A) 7→ (∆′;Γ ′ ⇒ A2) D
∆′;Γ ′ ` E1 ⇒ A1  e ∆′ ` A1 ∗A2

E1, , C : (∆;Γ ⇐ A) 7→ (∆′;Γ ′ ⇒ A1 & A2) 〈e,D〉

CTyp-rcd2
C : (∆;Γ ⇐ A) 7→ (∆′;Γ ′ ⇒ B) D

{l = C} : (∆;Γ ⇐ A) 7→ (∆′;Γ ′ ⇒ {l : B}) D

CTyp-proj2
C : (∆;Γ ⇐ A) 7→ (∆′;Γ ′ ⇒ {l : B}) D
C.l : (∆;Γ ⇐ A) 7→ (∆′;Γ ′ ⇒ B) D

CTyp-anno2
C : (∆;Γ ⇐ B) 7→ (∆′;Γ ′ ⇐ A) D
C : A : (∆;Γ ⇐ B) 7→ (∆′;Γ ′ ⇒ A) D

CTyp-tabs2
C : (∆;Γ ⇐ A) 7→ (∆′, α ∗ B ;Γ ′ ⇒ B ′) D

∆′ ` B ∆′ ` Γ ′

Λ(α ∗ B). C : (∆;Γ ⇐ A) 7→ (∆′;Γ ′ ⇒ ∀(α ∗ B).B ′) Λα.D

CTyp-tapp2
C : (∆;Γ ⇐ A) 7→ (∆′;Γ ′ ⇒ ∀(α ∗A1).A2) D

∆′ ` B ∆′ ` B ∗A1

C B : (∆;Γ ⇐ A) 7→ (∆′;Γ ′ ⇒ [B/α]A2) D |B |
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C : (∆;Γ ⇒ A) 7→ (∆′;Γ ′ ⇐ B) D (Context typing IV)

CTyp-abs1
C : (∆;Γ ⇒ A) 7→ (∆′;Γ ′, x : A1 ⇐ A2) D

∆′ ` A1

λx . C : (∆;Γ ⇒ A) 7→ (∆′;Γ ′ ⇐ A1 → A2) λx .D

B Full Typing Rules of Fco

Φ ` Ψ (Well-formedness of value context)

wfe-empty

Φ ` •

wfe-var
Φ ` τ Φ ` Ψ
Φ ` Ψ, x : τ

Φ ` τ (Well-formedness of types)

wft-unit

Φ ` 〈〉

wft-nat

Φ ` Int

wft-var
α ∈ Φ
Φ ` α

wft-arrow
Φ ` τ1 Φ ` τ2
Φ ` τ1 → τ2

wft-prod
Φ ` τ1 Φ ` τ2

Φ ` τ1 × τ2

wft-all
Φ, α ` τ2
Φ ` ∀α. τ2

co :: τ1 . τ2 (Coercion typing)

ct-refl

id :: τ . τ

ct-trans
co1 :: τ2 . τ3 co2 :: τ1 . τ2

co1 ◦ co2 :: τ1 . τ3

ct-top

top :: τ . 〈〉

ct-bot

bot :: ∀α. α . τ

ct-topArr

top→ :: 〈〉 . 〈〉 → 〈〉

ct-arr
co1 :: τ ′1 . τ1 co2 :: τ2 . τ

′
2

co1 → co2 :: τ1 → τ2 . τ
′
1 → τ ′2

ct-pair
co1 :: τ1 . τ2 co2 :: τ1 . τ3

〈co1, co2〉 :: τ1 . τ2 × τ3

ct-distArr

dist→ :: (τ1 → τ2)× (τ1 → τ3) . τ1 → τ2 × τ3

ct-distAll

dist∀ :: (∀α. τ1)× (∀α. τ2) . ∀α. τ1 × τ2

ct-projl

π1 :: τ1 × τ2 . τ1

ct-projr

π2 :: τ1 × τ2 . τ2

ct-forall
co :: τ1 . τ2

co∀ :: ∀α. τ1 . ∀α. τ2

ct-topAll

top∀ :: 〈〉 . ∀α. 〈〉
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Φ;Ψ ` e : τ (Static semantics)

t-unit
Φ ` Ψ

Φ;Ψ ` 〈〉 : 〈〉

t-nat
Φ ` Ψ

Φ;Ψ ` i : Int

t-var
Φ ` Ψ (x : τ) ∈ Ψ

Φ;Ψ ` x : τ

t-abs
Φ;Ψ, x : τ1 ` e : τ2 Φ ` τ1

Φ;Ψ ` λx . e : τ1 → τ2

t-app
Φ;Ψ ` e1 : τ1 → τ2 Φ;Ψ ` e2 : τ1

Φ;Ψ ` e1 e2 : τ2

t-tabs
Φ, α;Ψ ` e : τ Φ ` Ψ
Φ;Ψ ` Λα. e : ∀α. τ

t-tapp
Φ;Ψ ` e : ∀α. τ ′ Φ ` τ

Φ;Ψ ` e τ : [τ/α]τ ′

t-pair
Φ;Ψ ` e1 : τ1 Φ;Ψ ` e2 : τ2

Φ;Ψ ` 〈e1, e2〉 : τ1 × τ2

t-capp
Φ;Ψ ` e : τ co :: τ . τ ′

Φ;Ψ ` co e : τ ′

e −→ e ′ (Single-step reduction)

r-topArr

(top→ 〈〉) 〈〉 −→ 〈〉

r-topAll

(top∀ 〈〉) τ −→ 〈〉

r-distArr

(dist→ 〈v1, v2〉) v3 −→ 〈v1 v3, v2 v3〉

r-distAll

(dist∀ 〈v1, v2〉) τ −→ 〈v1 τ, v2 τ〉

r-id

id v −→ v

r-trans

(co1 ◦ co2) v −→ co1 (co2 v)

r-top

top v −→ 〈〉

r-arr

((co1 → co2) v1) v2 −→ co2 (v1 (co1 v2))

r-pair

〈co1, co2〉 v −→ 〈co1 v , co2 v〉

r-projl

π1 〈v1, v2〉 −→ v1

r-projr

π2 〈v1, v2〉 −→ v2

r-forall

(co∀ v) τ −→ co (v τ)

r-app

(λx . e) v −→ [v/x ]e

r-tapp

(Λα. e) τ −→ [τ/α]e

r-ctxt
e −→ e ′

E [e] −→ E [e ′]
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C Decidability

Definition 7 (Size of Q).

size([]) = 0

size(Q, l) = size(Q)

size(Q,A) = size(Q) + size(A)

size(Q, α ∗A) = size(Q) + size(A)

Definition 8 (Size of types).

size(c) = 1

size(A→ B) = size(A) + size(B) + 1

size(A & B) = size(A) + size(B) + 1

size({l : A}) = size(A) + 1

size(∀(α ∗A).B) = size(A) + size(B) + 1

Lemma 3 (Decidability of algorithmic subtyping). Given Q, A and B, it
is decidable whether there exists co, such that Q ` A <: B  co.

Proof. Let the judgment Q ` A <: B  co be measured by size(Q) + size(A) +
size(B). For each subtyping rule, we show that every inductive premise is smaller
than the conclusion.

– Rules A-const, A-top, and A-bot have no premise.
– Case

A-and
Q ` A <: B1  co1 Q ` A <: B2  co2

Q ` A <: B1 & B2  JQK& ◦ 〈co1, co2〉

In both premises, they have the same Q and A, but B1 and B2 are smaller
than B1 & B2.

– Case
A-arr
Q,B1 ` A <: B2  co

Q ` A <: B1 → B2  co

The size of premise is smaller than the conclusion as size(B1 → B2) =
size(B1) + size(B2) + 1.

– Case
A-rcd
Q, l ` A <: B  co

Q ` A <: {l : B} co

In premise, the size is size(Q, l) + size(A) + size(B) = size(Q) + size(A) +
size(B), which is smaller than size(Q)+size(A)+size({l : B}) = size(Q)+
size(A) + size(B) + 1.
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– Case
A-forall
Q, α ∗ B1 ` A <: B2  co

Q ` A <: ∀(α ∗ B1).B2  co

The size of premise is smaller than the conclusion as size(Q) + size(A) +
size(∀(α∗B1).B2) = size(Q)+size(A)+size(B1)+size(B2)+1 > size(Q, α∗
B1) + size(A) + size(B2) = size(Q) + size(B1) + size(A) + size(B2).

– Case
A-arrConst
[] ` A <: A1  co1 Q ` A2 <: c co2

A,Q ` A1 → A2 <: c co1 → co2

In the first premise, the size is smaller than the conclusion because of the size
of Q and A2. In the second premise, the size is smaller than the conclusion
because size(A1 → A2) > size(A2).

– Case
A-rcdConst
Q ` A <: c co

l ,Q ` {l : A} <: c co

The size of premise is smaller as size(l ,Q) + size({l : A}) + size(c) =
size(Q) + size(A) + size(c) + 1 > size(Q) + size(A) + size(c).

– Case
A-andConst
Q ` Ai <: c co i ∈ {1, 2}
Q ` A1 & A2 <: c co ◦ πi

The size of premise is smaller as size(A1 & A2) = size(A1) + size(A2) + 1 >
size(Ai).

– Case
A-allConst

[] ` A <: A1 Q ` A2 <: c co

(α ∗A,Q) ` ∀(α ∗A1).A2 <: c co∀

In the first premise, the size is smaller than the conclusion because of the size
of Q and A2. In the second premise, the size is smaller than the conclusion
because size(∀(β ∗A1).A2) > size(A2).

ut

Lemma 6 (Decidability of Top-like types). Given a type A, it is decidable
whether eAd.

Proof. Induction on the judgment eAd. For each subtyping rule, we show that
every inductive premise is smaller than the conclusion.

– rule TL-top has no premise.
– Case

TL-and
eAd eBd
eA & Bd

size(A & B) = size(A) + size(B) + 1, which is greater than size(A) and
size(B).
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– Case
TL-arr
eBd

eA→ Bd

size(A→ B) = size(A) + size(B) + 1, which is greater than size(B).
– Case

TL-rcd
eAd

e{l : A}d

size({l : A}) = size(A) + 1, which is greater than size(A).
– Case

TL-all
eBd

e∀(α ∗A).Bd

size(∀(α ∗A).B) = size(A) + size(B) + 1, which is greater than size(B).
ut

Lemma 7 (Decidability of disjointness axioms checking). Given A and
B, it is decidable whether A ∗ax B.

Proof. A ∗ax B is decided by the shape of types, and thus it’s decidable. ut

Lemma 4 (Decidability of disjointness checking). Given ∆, A and B, it
is decidable whether ∆ ` A ∗ B.

Proof. Let the judgment ∆ ` A ∗ B be measured by size(A) + size(B). For
each subtyping rule, we show that every inductive premise is smaller than the
conclusion.

– Case
D-topL
eAd

∆ ` A ∗ B

By Lemma 6, we know eAd is decidable.
– Case

D-topR
eBd

∆ ` A ∗ B

By Lemma 6, we know eBd is decidable.
– Case

D-arr
∆ ` A2 ∗ B2

∆ ` A1 → A2 ∗ B1 → B2

size(A1 → A2) + size(B1 → B2) > size(A2) + size(B2).
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– Case
D-andL
∆ ` A1 ∗ B ∆ ` A2 ∗ B

∆ ` A1 & A2 ∗ B

size(A1 & A2) + size(B) is greater than size(A1) + size(B) and size(A2) +
size(B).

– Case
D-andR
∆ ` A ∗ B1 ∆ ` A ∗ B2

∆ ` A ∗ B1 & B2

size(B1 & B2) + size(A) is greater than size(B1) + size(A) and size(B2) +
size(A).

– Case
D-rcdEq

∆ ` A ∗ B

∆ ` {l : A} ∗ {l : B}

size({l : A}) + size({l : B}) is greater than size(A) + size(B).
– Case

D-rcdNeq

l1 6= l2

∆ ` {l1 : A} ∗ {l2 : B}

It’s decidable whether l1 is equal to l2.
– Case

D-tvarL
(α ∗A) ∈ ∆ A <: B

∆ ` α ∗ B

By Lemma 3, it’s decidable whether A <: B .
– Case

D-tvarR
(α ∗A) ∈ ∆ A <: B

∆ ` B ∗ α

By Lemma 3, it’s decidable whether A <: B .
– Case

D-forall
∆,α ∗A1 & A2 ` B1 ∗ B2

∆ ` ∀(α ∗A1).B1 ∗ ∀(α ∗A2).B2

size(∀(α∗A1).B1) + size(∀(α∗A2).B2) is greater than size(B1) + size(B2).
– Case

D-ax
A ∗ax B

∆ ` A ∗ B

By Lemma 7 it’s decidable whether A ∗ax B .
ut
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D Circuit Embeddings

{-

Parallel Prefix Circuits DSL

Finally Tagless Encoding

Supporting zygo- and mutumorphisms

-}

{-# LANGUAGE ConstraintKinds #-}

{-# LANGUAGE DataKinds #-}

{-# LANGUAGE FlexibleContexts #-}

{-# LANGUAGE FlexibleInstances #-}

{-# LANGUAGE GADTs #-}

{-# LANGUAGE KindSignatures #-}

{-# LANGUAGE MultiParamTypeClasses #-}

{-# LANGUAGE RankNTypes #-}

{-# LANGUAGE ScopedTypeVariables #-}

{-# LANGUAGE TypeApplications #-}

{-# LANGUAGE TypeOperators #-}

{-# LANGUAGE UndecidableInstances #-}

{- Generic Definitions for Records -}

data Record :: [*] → * where
Nil :: Record ’[]

Cons :: a → Record as → Record (a ’: as)

class In a as where
project :: Record as → a

instance {-# OVERLAPPING #-} In a (a ’: as) where
project (Cons x _) = x

instance {-# OVERLAPPING #-} In a as ⇒ In a (b ’: as) where
project (Cons _ xs) = project xs

data All c :: [*] → * where
AllNil :: All c ’[]

AllCons :: c a ⇒ All c as → All c (a ’: as)

{- Circuit DSL Infrastructure -}

class Circuit0 c where
identity_ :: Int → c

fan_ :: Int → c
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class Circuit0 c ⇒ Circuit1 d c where
beside_ :: Record d → Record d → c

above_ :: Record d → Record d → c

stretch_ :: [Int] → Record d → c

class Circuit2 d1 d2 where
modality :: All (Circuit1 d1) d2

instance Circuit2 d1 ’[] where
modality = AllNil

instance (Circuit1 d1 a, Circuit2 d1 as) ⇒ Circuit2 d1 (a ’: as) where
modality = AllCons modality

type Circuit3 d = Circuit2 d d

identity :: forall d. Circuit3 d ⇒ Int → Record d

identity = identity’ (modality @d @d)

where
identity’ :: All (Circuit1 d1) d2 → Int → Record d2

identity’ AllNil n = Nil

identity’ (AllCons m) n = Cons (identity_ n) (identity’ m n)

fan :: forall d. Circuit3 d ⇒ Int → Record d

fan = fan’ (modality @d @d)

where
fan’ :: All (Circuit1 d1) d2 → Int → Record d2

fan’ AllNil n = Nil

fan’ (AllCons m) n = Cons (fan_ n) (fan’ m n)

beside :: forall d. Circuit3 d ⇒ Record d → Record d → Record d

beside = beside’ (modality @ d @ d)

where
beside’ :: All (Circuit1 d1) d2 → Record d1 → Record d1 → Record

d2

beside’ AllNil c1 c2 = Nil

beside’ (AllCons m) c1 c2 = Cons (beside_ c1 c2) (beside’ m c1 c2)

above :: forall d. Circuit3 d ⇒ Record d → Record d → Record d

above = above’ (modality @ d @ d)

where
above’ :: All (Circuit1 d1) d2 → Record d1 → Record d1 → Record

d2

above’ AllNil c1 c2 = Nil

above’ (AllCons m) c1 c2 = Cons (above_ c1 c2) (above’ m c1 c2)

stretch :: forall d. Circuit3 d ⇒ [Int] → Record d → Record d

stretch = stretch’ (modality @ d @ d)

where
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stretch’ :: All (Circuit1 d1) d2 → [Int] → Record d1 → Record d2

stretch’ AllNil ws c = Nil

stretch’ (AllCons m) ws c = Cons (stretch_ ws$ c) (stretch’ m ws

c)

{- Shallow Embeddings -}

-- Width

newtype Width = Width { width :: Int }

instance Circuit0 Width where
identity_ n = Width n

fan_ n = Width n

instance In Width d ⇒ Circuit1 d Width where
beside_ c1 c2 = Width (width (project c1) + width (project c2))

above_ c1 c2 = project c1

stretch_ ws c = Width (sum ws)

-- Well-Sizedness

newtype WellSized = WellSized { wellSized :: Bool }

instance Circuit0 WellSized where
identity_ n = WellSized True
fan_ n = WellSized True

instance (In WellSized d, In Width d) ⇒ Circuit1 d WellSized where
beside_ c1 c2 = WellSized (wellSized (project c1) && wellSized

(project c2))

above_ c1 c2 =

WellSized

(width (project c1) == width (project c2) &&

wellSized (project c1) && wellSized (project c2))

stretch_ ws c =

WellSized (wellSized (project c) && length ws == width (project c))

{- Example -}

test :: Record ’[Width, WellSized]

test = above (identity 5) (fan 5)

test’ =

case test of
Cons x (Cons y Nil) → (width x, wellSized y)
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