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Abstract. This paper presents FCore: a JVM implementation of Sys-
tem F with support for full tail-call elimination (TCE). Our compilation
technique for FCore is innovative in two respects: it uses a new rep-
resentation for first-class functions called imperative functional objects;
and it provides a way to do TCE on the JVM using constant space.
Unlike conventional TCE techniques on the JVM, allocated function
objects are reused in chains of tail calls. Thus, programs written in
FCore can use idiomatic functional programming styles, relying on
TCE, and perform well without worrying about the JVM limitations.
Our empirical results show that programs which use tail calls can run
in constant space and with low execution time overhead when compiled
with FCore.

1 Introduction

A runtime environment, such as the JVM, attracts both functional programming
(FP) languages’ compiler writers and users: it enables cross-platform develop-
ment and comes with a large collection of libraries and tools. Moreover, FP lan-
guages give programmers on the JVM other benefits: simple, concise and elegant
ways to write different algorithms; high code reuse via higher-order functions;
and more opportunities for parallelism, by avoiding the overuse of side-effects
(and shared mutable state) [2]. Unfortunately, compilers for functional languages
are hard to implement efficiently in the JVM. FP promotes a programming style
where functions are first-class values and recursion is used instead of mutable
state and loops to define algorithms. The JVM is not designed to deal with such
programs.

The difficulty in optimizing FP in the JVM means that: while FP in the JVM
is possible today, some compromises are still necessary for writing efficient pro-
grams. Existing JVM functional languages, including Scala [16] and Clojure [10],
usually work around the challenges imposed by the JVM. Those languages give
programmers alternatives to a FP style. Therefore, performance-aware program-
mers avoid certain idiomatic FP styles, which may be costly in those languages,
and use the available alternatives instead.

In particular, one infamous challenge when writing a compiler for a func-
tional language targeting the JVM is: How to eliminate and/or optimize tail



calls? Before tackling that, one needs to decide how to represent functions in
the JVM. There are two standard options: JVM methods and functions as ob-
jects (FAOs). Encoding first-class functions using only JVM methods directly
is limiting: JVM methods cannot encode currying and partial function applica-
tion directly. To support these features, the majority of functional languages or
extensions (including Scala, Clojure, and Java 8) adopt variants of the functions-
as-objects approach:

interface FAO { Object apply(Object arg);}

With this representation, we can encode curried functions, partial application
and pass functions as arguments. However, neither FAOs nor JVM methods
offer a good solution to deal with general tail-call elimination (TCE) [22]. The
JVM does not support proper tail calls. In particular scenarios, such as single,
tail-recursive calls, we can easily achieve an optimal solution in the JVM. Both
Scala and Clojure provide some support for tail-recursion [16,11]. However, for
more general tail calls (such as mutually recursive functions or non-recursive
tail calls), existing solutions can worsen the overall performance. For example,
JVM-style trampolines [19] (which provide a general solution for tail calls) are
significantly slower than normal calls and consume heap memory for every tail
call.

Contributions. This paper presents a new JVM compilation technique for
functional programs, and creates an implementation of System F [9,18] using
the new technique. The compilation technique builds on a new representation
of first-class functions in the JVM: imperative functional objects (IFOs). With
IFOs it is possible to use a single representation of functions in the JVM and
still achieve memory-efficient TCE. As a first-class function representation, IFOs
also support currying and partial function applications.

We represent an IFO by the following abstract class:

abstract class Function {

Object arg, res;

abstract void apply();

}

With IFOs, we encode both the argument (arg) and the result of the functions
(res) as mutable fields. We set the argument field before invoking the apply()
method. At the end of the apply()method, we set the result field. An important
difference between the IFOs and FAOs encoding of first-class functions is that, in
IFOs, function application is divided in two parts : setting the argument field ; and
invoking the apply method. For example, if we have a function call factorial
10, the corresponding Java code using IFOs is:

factorial.arg = 10; // setting argument

factorial.apply(); // invoking function

The fact that we can split function application into two parts is key to enable
new optimizations related to functions in the JVM. In particular, the TCE ap-
proach with IFOs does not require memory allocation for each tail call and has



less execution time overhead than the JVM-style trampolines used in languages
such as Clojure and Scala. Essentially, with IFOs, it is possible to provide a
straightforward TCE implementation, resembling Steele’s “UUO handler” [23],
in the JVM.

Using IFOs and the TCE technique, we created FCore: a JVM implemen-
tation of an extension of System F. FCore aims to serve as an intermediate
functional layer on top of the JVM, which ML-style languages can target. Ac-
cording to our experimental results, FCore programs perform competitively
against programs using regular JVM methods, while still supporting TCE. Pro-
grams in FCore tend to have less execution time overhead and use less memory
than programs using conventional JVM trampolines.

In summary, the contributions of this paper are:

– Imperative Functional Objects: A new representation of first-class func-
tions in the JVM, offering new ways to optimize functional programs.

– A memory-efficient approach to tail-call elimination: A way to im-
plement TCE in the JVM using IFOs without allocating memory per each
tail call.

– FCore: An implementation of a System F-based intermediate language that
can be used to target the JVM by FP compilers.

– Formalization and empirical results: Our basic compilation method
from a subset of FCore into Java is formalized. Our empirical results indi-
cate that FCore allows general TCE in constant memory space and with
execution time comparable to regular JVM methods.

2 FCore and IFOs, Informally

This section informally presents FCore programs and their IFO-based encoding
and how to deal with tail-call elimination. Sections 3 and 4 present a formalized
compilation method for a subset of FCore (System F) into Java, based on the
ideas from this section. Note that, for purposes of presentation, we show slightly
simplified encodings in this section compared to the formal compilation method.

2.1 Encoding Functions with IFOs

In FCore, we compile all functions to classes extending the Function class pre-
sented in Section 1. For example, consider a simple identity function on integers.
In FCore or System F (extended with integers), we represent it as follows:

id ≡ λ(x : Int). x

We can manually encode this definition with an IFO in Java as follows:

class Id extends Function {

public void apply () {

final Integer x = (Integer) this.arg;

res = x;

}

}



The arg field encodes the argument of the function, whereas the res field encodes
the result. Thus, to create the identity function, all we need to do is to copy the
argument to the result. A function invocation such as id 3 is encoded as follows:

Function id = new Id();

id.arg = 3; // setting argument

id.apply(); // invoking apply()

The function application goes in two steps: it first sets the arg field to 3 and
then invokes the apply() method.

Curried Functions. IFOs can naturally define curried functions, such as:

constant ≡ λ(x : Int). λ(y : Int). x

Given two integer arguments, this function will always return the first one. Using
IFOs, we can encode constant in Java as follows:

class Constant extends Function {

public void apply () {

final Integer x = (Integer) this.arg;

class IConstant extends Function {

public void apply() {

final Integer y = (Integer) this.arg;

res = x;

}

}

res = new IConstant();

}

}

Here, the first lambda function sets the second one as its result. The definition
of the second apply method sets the result of the function to the argument of
the first lambda function. The use of inner classes enforces the lexical scoping of
functions. We encode an application such as constant 3 4 as:

Function constant = new Constant();

constant.arg = 3;

constant.apply();

Function f = (Function) constant.res;

f.arg = 4;

f.apply();

We first set the argument of the constant function to 3. Then, we invoke the
apply method and store the resulting function to a variable f. Finally, we set
the argument of f to 4 and invoke f’s apply method. Note that the alias x for
this.arg is needed to prevent accidental overwriting of arguments in partial
applications. For example in constant 3 (constant 4 5), the inner application
constant 4 5 would overwrite 3 to 4 and the outer one would incorrectly return
4.

Partial Function Application. With curried functions, we can encode par-
tial application easily. For example, consider the following expression: three ≡



// tail-call elimination

class Mutual {

Function teven;

Function todd;

class TEven extends Function {

public void apply () {

final Integer n =

(Integer) this.arg;

if (n == 0) {

res = true;

}

else {

todd.arg = n - 1;

// tail call

Next.next = todd;

}

}

}

class TOdd extends Function {

public void apply () {

final Integer n =

(Integer) this.arg;

if (n == 0) {

res = false;

}

else {

teven.arg = n - 1;

// tail call

Next.next = teven;

}

}

}

{ // initialization block

todd = new TOdd();

teven = new TEven();

}

}

Fig. 1. Functions even and odd using IFOs with tail-call elimination

constant 3. The code for this partial application is simply:

Function constant = new Constant();

constant.arg = 3;

constant.apply();

Recursion. FCore supports simple recursion, as well as mutual recursion. For
example, consider the functions even and odd defined to be mutually recursive:

even ≡ λ(n : Int). if (n = 0) then true else odd(n− 1)
odd ≡ λ(n : Int). if (n = 0) then false else even(n− 1)

These two functions define a naive algorithm for detecting whether a number
is even or odd. We can encode recursion using Java’s own recursion: the Java
references even and odd are themselves mutually recursive (Figure 1).

2.2 Tail-call Elimination

The recursive calls in even and odd are tail calls. IFOs present new ways for
doing tail-call elimination in the JVM. The key idea, inspired by Steele’s work
on encoding tail-call elimination [23], is to use a simple auxiliary structure

class Next {static Function next = null;}

that keeps track of the next call to be executed. Figure 1 illustrates the use of
the Next structure. This is where we make a fundamental use of the fact that
function application is divided into two parts with IFOs. In tail calls, we set the
arguments of the function, but we delay the apply method calls. Instead, the



// TCE with JVM-style trampolines

interface Thunk {

Object apply();

}

...

static Object teven(final int n) {

if(n == 0) return true;

else return new Thunk() {

public Object apply() {

return todd(n-1);

}

};

}

static Object todd(final int n) {

if(n == 0) return false;

else return new Thunk() {

public Object apply() {

return teven(n-1);

}

};

...

Object trampoline = even(10);

while(trampoline instanceof Thunk)

trampoline =

((Thunk) trampoline).apply();

return (Boolean) trampoline;

// TCE with IFOs + Next

Mutual m = new Mutual();

Function teven = m.teven;

...

teven.arg = 10;

Next.next = teven;

Function c;

Boolean res;

do {

c = Next.next;

Next.next = null;

c.apply();

} while (Next.next != null);

res = (Boolean) c.res;

Fig. 2. This figure contrasts the TCE approach with JVM-style trampolines (left,
custom implementation) and with IFOs and the Next handler (right, see Figure 1 for
implementation).

next field of Next is set to the function with the apply method. The apply

method is then invoked at the call-site of the functions. The code in Figure
2 illustrates the call even 10. In JVM-style trampolines, each (method) call
creates a Thunk. IFOs, however, are reused throughout the execution. The idea
is that a function call (which is not a tail-call) has a loop that jumps back-and-
forth into functions. The technique is similar to some trampoline approaches in
C-like languages. However, an important difference to JVM-style trampolines
is that utilization of heap space is not growing. In other words, tail-calls do
not create new objects for their execution, which improves memory and time
performance. Note that this method is general : it works for simple recursive tail
calls, mutually recursive tail calls, and non-recursive tail calls.

3 Compiling FCore

This section formally presents FCore and its compilation to Java. FCore is an
extension of System F (the polymorphic λ-calculus) [9,18] that can serve as a
target for compiler writers.



Syntax. In this section, for space reasons, we cover only the FCore constructs
that correspond exactly to System F. Nevertheless, the constructs in System F
represent the most relevant parts of the compilation process. As discussed in
Section 5.1, our implementation of FCore includes other constructs that are
needed to create a practical programming language.

System F. The basic syntax of System F is:

Types τ ::= α | τ1 → τ2 | ∀α.τ
Expressions e ::= x | λ(x : τ).e | e1 e2 | Λα.e | e τ

Types τ consist of type variables α, function types τ1 → τ2, and type abstraction
∀α.τ . A lambda binder λ(x : τ).e abstracts expressions e over values (bound by
a variable x of type τ) and is eliminated by function application e1 e2. An
expression Λα.e abstracts an expression e over some type variable α and is
eliminated by a type application e τ .

From System F to Java. Figure 3 shows the type-directed translation rules
that generate Java code from given System F expressions. We exploit the fact
that System F has an erasure semantics in the translation. This means that
type abstractions and type applications do not generate any code or have any
overhead at run-time.

We use two sets of rules in our translation. The first one is translating Sys-
tem F expressions. The second set of rules, the function 〈τ〉, describes how we
translate System F types into Java types.

In order to do the translation, we need translation environments :

Γ ::= ǫ | Γ (x1 : τ 7→ x2) | Γα

Translation environments have two purposes: 1) to keep track of the type and
value bindings for type-checking purposes; 2) to establish the mapping between
System F variables and Java variables in the generated code.

The translation judgment in the first set of rules adapts the typing judgment
of System F:

Γ ⊢ e : τ ; J in S

It states that System F expression e with type τ results in Java expression
J created after executing a block of statements S with respect to translation
environments Γ . FJ-Var checks whether a given value-type binding is present
in an environment and generates a corresponding, previously initialized, Java
variable. FJ-TApp resolves the type of an abstraction and substitutes the applied
type in it. FJ-TAbs translates the body of type abstractions – note that, in
the extended language, type abstractions would need to generate suspensions.
FJ-Abs translates term abstractions. For translating term abstractions, we need
evidence for resolving the body e and a bound variable x of type τ1. We then
wrap the generated expression J and its deriving statements S as follows. We
create a class with a fresh name FC, extending the Function class. In the body
of apply, we first create an alias for the function argument with a fresh name



Γ ⊢ e : τ ; J in S

(FJ-Var)
(x1 : τ 7→ x2) ∈ Γ

Γ ⊢ x1 : τ ; x2 in {}
(FJ-TApp)

Γ ⊢ e : ∀α.τ2 ; J in S

Γ ⊢ e τ1 : τ2[τ1/α] ; J in S

(FJ-TAbs)
Γ, α ⊢ e : τ ; J in S

Γ ⊢ Λα.e : ∀α.τ ; J in S

(FJ-Abs)

Γ, x : τ1 7→ y ⊢ e : τ2 ; J in S1

f, y , FC fresh

Γ ⊢ λ(x : τ1).e : τ1 → τ2 ; f in S2

S2 := {

class FC extends Function {

void apply() {

〈T1〉 y = (〈T1〉) this.arg;

S1;

res = J;
}

};

Function f = new FC();}

(FJ-App)

Γ ⊢ e1 : τ2 → τ1 ; J1 in S1

Γ ⊢ e2 : τ2 ; J2 in S2 f, xf fresh

Γ ⊢ e1 e2 : τ1 ; xf in S1 ⊎ S2 ⊎ S3

S3 := {

Function f = J1;

f.arg = J2;

f.apply();
〈T1〉 xf = (〈T1〉) f.res;}

Translation of System F types to Java types:

〈α〉 = Object

〈∀α.τ〉 = 〈τ〉
〈τ2 → τ1〉 = Function

Fig. 3. Type-Directed Translation from System F to Java

y, then execute all statements S1 deriving its resulting Java expression J that
we assign as the output of this function. Following that, we create a fresh alias f
for the instance of the mentioned function, representing the class FC. FJ-App
is the most vital rule. Given the evidence that e1 is a function type, we generate
a fresh alias f for its corresponding Java expression J1. The S3 block contains
statements to derive the result of the application. As described in Section 2, we
split applications into two parts in IFOs. We first set the argument of f to the
Java expression J2, given the evidence resulting from e2. Then, we call f ’s apply



method and store the output in a fresh variable xf . Before executing statements
in S3, we need to execute statements S1 and S2 deriving J1 and J2 respectively.
To derive xf , we need to execute all dependent statements: S1 ⊎ S2 ⊎ S3.

Properties of the Translation. Two fundamental properties are worthwhile
proving for this translation: translation generates well-typed (cast-safe) Java pro-
grams ; and semantic preservation. Proving these two properties requires the
static and dynamic semantics (as well as the soundness proof) of the target
language (an imperative subset of Java with inner classes in our case). Unfor-
tunately, as far as we know, the exact subset of Java that we use has not been
completely formalized yet. Three possibilities exist: 1) choosing an existing Java
subset formalization and emulating its missing features in the translation, 2) de-
veloping our own formalized Java subset, 3) relating the translation to complete
Java semantics within matching logic [5]. Each option would require complex
changes beyond this paper’s scope, hence it is a part of future work.

4 Tail-call Elimination

In this section, we show how we can augment the basic translation in Section 3
to support tail-call elimination.

As shown in Figure 1, we can do TCE with IFOs. To capture this formally,
we augment the apply method call generation, in rule FJ-App, with two possi-
bilities:

1. The apply method is in a tail position. This means we can immediately
return by setting the next field of the controlling auxiliary Next class to
the current Function object, without calling the apply method.

2. The apply method is not in a tail position. This means we need to evaluate
the corresponding chain of calls, starting with the current call, followed by
any apply calls within it.

We need to make two changes to achieve this goal: 1) add a tail call detection
mechanism; and 2) use a different way of compiling function applications.

Detecting Tail Calls. We base the detection mechanism on the tail call context
from the Revised Report on Scheme [1]. When we translate a value application
e1 e2, we know that e2 is not in a tail position, whereas e1 may be if the current
context is a tail context. In type applications and abstractions, we know they
only affect types: they do not affect the tail call context. Thus, they preserve the
state we entered with for translating the apply calls. In λ abstractions, we enter
a new tail call context. This detection mechanism is integrated in our translation
and used when compiling function applications.



Compiling Function Applications. We augment the apply method call genera-
tion as follows. We extend the premise of FJ-App to include one extra freshly
generated variable c:

Γ ⊢ e1 : τ2 → τ1 ; J1 in S1

Γ ⊢ e2 : τ2 ; J2 in S2 f, xf , c fresh

Γ ⊢ e1 e2 : τ1 ; xf in S1 ⊎ S2 ⊎ S3

In the conclusion, we change S3. For tail calls, we define it as follows:

S3 := {

Function f = J1;

f.arg = J2;

Next.next = f;

}

Note that xf is not bound in S3 here. Because the result of a tail call is
delayed, the result of the tail call is still not available at this point. However, this
does not matter: since we are on a tail call, the variable would be immediately
out of its scope anyway and cannot be used.

For non-tail calls, we initialize xf in S3 as the final result:

S3 := {

Function f = J1;

f.arg = J2;

Next.next = f;

Function c;

Object xf;

do {

c = Next.next;

Next.next = null;

c.apply();

} while (Next.next != null);

xf = c.res;

}

This generated code resembles the example in Section 2, except for the gen-
eral Object xf being in place of the specialized Boolean res. The idea of
looping through a chain of function calls remains the same.

5 Implementation & Evaluation

5.1 Implementation

We implemented3 a compiler for FCore based on the representation and type-
directed translation we described in Sections 3 and 4. Our actual implementation
has extra constructs, such as primitive operations, types and literals, let bind-
ings, conditional expressions, tuples, and fixpoints. It also contains constructs
for a basic Java interoperability. The compiler performs other common forms of

3 FCore code repository: https://github.com/hkuplg/fcore

https://github.com/hkuplg/fcore


optimizations, such as optimizing multi-argument function applications, partial
evaluation, inlining, and unboxing. We wrote the compiler in Haskell and the
code repository contains several example programs as well as a large test suite.

5.2 Evaluation

We evaluate two questions with the respect to IFOs:

1. Do IFOs support general TCE in constant memory space?
2. What is the execution time overhead of IFOs?

The first question is assessed through measuring total allocated objects on
heap in an implementation of DFA. The second question is evaluated in two
parts. Firstly, we use microbenchmarks to isolate different simple call behaviors.
Secondly, we come back to the DFA implementation’s time performance.

# of Objects Min Max

IFO 5451 5451

Java (T) 4665 104879

Java (M) 4128 4128

Java (FAO) 18102 24082

Fig. 4. The DFA encoding: the two columns show the minimum and maximum numbers
of total allocated objects on heap from isolated profiled runs with all input lengths.
Due to space limitations, the x-axes of plots are cropped at 15000 for clarity.

General TCE in Constant Memory. One common idiom in functional pro-
gramming is encoding finite states as tail recursive functions and state transitions
as mutual calls among these functions. One trivial example of this is the naive
even-odd program which switches between two states. A more useful application
is in the implementation of finite state automata [13]. Normally, functional lan-
guage programmers seek this idiom for its conciseness. However in JVM-hosted
functional languages, programmers tend to avoid this idiom, because they either
lose correctness (StackOverflow exceptions in a method-based representation)
or performance (in a trampoline-based one). In this experiment, we implemented



a DFA recognizing a regular expression (AAB∗|A∗B)+ and measured the per-
formance on randomly generated Strings with different lengths.

We implemented it in FCore to assess IFOs (with all the optimizations
mentioned in Sections 4 and 5.1) and in Java (1.8.0 25) to assess different clo-
sure representations: method calls, Java 8’s lambdas (functions-as-objects), and
custom trampolines. We chose plain Java implementation, because we can exam-
ine the runtime behavior of different representations without potential compiler
overheads. All implementations used primitive char variables and did not allo-
cated any new objects on heap when reading from the input Strings. We report
the total number of allocated objects on heap in the isolated application runs,
as measured by HPROF [17], the JDK’s profiling tool.

We executed all benchmarks on the following platform with the HotSpotTMVM
(1.8.0 25): Intel R©CoreTMi5 3570 CPU, 1600MHz DDR3 4GB RAM, Ubuntu
14.04.1.

We show the result of this experiment in Figure 4. The IFO- and trampoline-
based implementations continued executing after method-based and FAO-based
ones threw a StackOverflow exception. IFOs, similarly to the method-based
implementation, allocated a constant number of objects on heap. The trampoline
one, however, increased its object allocation with the input, because it needed
to create an object for each tail call.

Time Overhead: Isolated Call Behavior. For measuring time overhead, we
show two experiments: isolated simple call behavior in different microbenchmarks
and the time performance of the DFA implementation. We wrote the benchmark
programs in the extended System F for our compilation process and in the fol-
lowing JVM-hosted languages in their stable versions: Scala (2.11.2)[16], Clojure
(1.6.0)[10], and Java (1.8.0 25, as before). For encoding mutually recursive tail
calls, we used the provided trampoline facilities in Scala (scala.util.control
.TailCalls) and Clojure (tramp from clojure.core.logic).

The programs were executed on the same platform as the memory experiment.
For the automation of performance measurement, we used the Java Microbench-
mark Harness (JMH) tool which is a part of OpenJDK [8]. Based on the provided
annotations, JMH measures execution of given programs. In addition to that, it
takes necessary steps to gain stable results. They include non-measured warm-up
iterations for JITC, forcing garbage collection before each benchmark, and run-
ning benchmarks in isolated VM instances. We configured JMH for 10 warm-up
runs and 10 measured runs from which we compute averages.

We chose four programs to represent the following behaviors:

– Non-tail recursive calls : Computing the factorial and Fibonacci numbers
using naive algorithms.

– Single method tail recursive calls : Computing factorial using a tail recursive
implementation.

– Mutually recursive tail calls : Testing evenness and oddness using two mutu-
ally recursive functions.



Low Input Values fact(20) in ns fib(20) in ns tailfact(20) in ns evenodd(256) in µs

IFO 204.84± 2.35 35.50± 0.47 49.52± 0.72 32.95± 0.09

Java 147.95± 0.65 22.50± 0.06 18.18± 0.19 30.93± 0.12

Java (T) 1280.23± 20.99 502.35± 9.42 139.39± 1.79 474.41± 6.29

Scala 130.46± 0.40 22.55± 0.14 15.94± 0.05 32.79± 0.09

Clojure 573.95± 3.41 314.24± 2.25 205.21± 0.35 82.61± 0.95

High Input Values evenodd(214748) in µs tailfact(10000) in µs

IFO 152.47± 0.43 166.64± 0.51

Java 1060.35± 14.52 644.10± 3.89

Scala 1864.34± 31.24 1004.13± 13.49

Clojure 6533.14± 92.65 N/A
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Fig. 5. The isolated call behavior experiments: the reported times are averages of 10
measured runs and corresponding standard deviations. The plots are normalized to
Java’s (left table and plot) and IFO’s (right table and plot) results – the lower, the
faster.

Non-tail recursive programs present two examples of general recursive calls and
we executed them, altogether with the tail recursive programs, on low input
values (not causing StackOverflow exceptions in default JVM settings). In ad-
dition to that, we executed the tail recursive programs on high input values in
which method-based implementations threw StackOverflow exceptions in de-
fault JVM settings. We show the results in Figure 5. Its left part shows the
result for low input values in IFOs, method implementations in all the other
languages and the fastest trampoline implementation (Java); the plot is normal-
ized to the Java method-based implementation’s results. The right part shows
the result for high input values in IFO- and trampoline-based implementations;
the plot is normalized to results of IFO-based implementations. For low input
values, we can see that IFO-based implementations run slightly slower than
method-based ones. However, their overhead is small compared with the fastest
trampoline implementations in our evaluation. IFOs ran 0.1 to 1.7-times slower
than method-based representations, whereas the fastest trampolines ran 7.7 to
22.3-times slower. In the tail recursive programs, Scala ran slightly faster than
standard Java methods due to its compiler optimizations. Clojure has an addi-
tional overhead, because its compiler enforces integer overflow checking. For the



high input values, the method-based implementations threw a StackOverflow

exception in default JVM settings, unlike IFOs and trampoline implementations
which can continue executing with this input. IFOs ran 3.9 to 12.2-times faster
(excluding Clojure) than trampoline implementations. Again, Clojure suffered
from its additional overhead and threw an integer overflow exception in the tail
recursive factorial. Using BigIntegers would prevent this, but we wanted to iso-
late the call behavior in this experiment, i.e. avoid any extra overhead from other
object allocations.

Input length (time unit) 1000 (µs) 3000 (µs) 10000 (µs) 100000 (µs)

IFO 5.10± 0.10 15.98± 0.07 77.81± 0.83 933.58± 13.40

Java (Trampoline-based) 7.03± 0.130 26.89± 0.10 102.98± 2.36 1099.80± 15.46

Java (Method-based) 3.80± 0.07 11.61± 0.10 48.83± 0.13 N/A

Java (FAO-based) 6.37± 0.01 17.62± 0.05 N/A N/A
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Fig. 6. The DFA encoding: the reported times are averages of 10 measured runs and
corresponding standard deviations. Due to space limitations, the x-axes of plots are
cropped at 15000 for clarity.

Time Overhead: DFA Performance. Unlike the first experiment, where
the programs isolated costs of plain recursive calls, DFA encoding represents a
more realistic behavior with other costs, such as non-recursive method calls and
calls to other API methods (e.g. reading input). The setting was the same as in
the constant memory experiment and we performed time measurement in the
same way as in the isolated call behavior experiment. We show the result of this



experiment in Figure 6. The FAO-based implementation ran slowest out of all
implementations and threw StackOverflow exception with a smaller input than
the method-based implementation. That is because it creates extra objects and
performs extra calls due to its representation. As in the isolated calls experiment,
the IFO-based implementation ran about 0.5-times slower than method-based
implementation. Trampolines, however, ran about 2-times slower. The IFO- and
trampoline-based implementations continued executing after method-based one
threw a StackOverflow exception. The IFO-based implementation was about
0.2-times faster than the trampoline one for larger inputs.

6 Related Work

This section discusses related work: intermediate functional languages on top of
the JVM, TCE and function representations, TCE on the JVM, and the JVM
modifications.

Intermediate Functional Languages on top of the JVM. A primary objective of
our work is to create an efficient intermediate language that targets the JVM.
With such intermediate language, compiler writers can easily develop FP compil-
ers in the JVM. System F is an obvious candidate for an intermediate language
as it serves as a foundation for ML-style or Haskell-style FP languages. However,
there is no efficient implementation of System F in the JVM. The only imple-
mentation of System F that we know of (for a JVM-like platform) was done
by Kennedy and Syme [12]. They showed that System F can be encoded, in a
type-preserving way, into .NET’s C#. That encoding could easily be employed
in Java or the JVM as well. However, their focus was different from ours. They
were not aiming at having an efficient implementation of System F. Instead,
their goal was to show that the type system of languages such as C# or Java is
expressive enough to faithfully encode System F terms. They used a FAO-based
approach and have not exploited the erasure semantics of System F. As a result,
the encoding suffers from various performance drawbacks and cannot be realis-
tically used as an intermediate language. MLj [4] compiled a subset of SML ’97
(interoperable with Java libraries) to the Monadic Intermediate Language, from
which it generated Java bytecode. Various Haskell-to-JVM compiler backends
[27,25,6] used different variations of the graph reduction machine [26] for their
code generation, whereas we translate from System F.

Tail-Call Elimination and Function Representations. A choice of a function rep-
resentation plays a great role [21] in time and space efficiency as well as in how
difficult it is to correctly implement tail calls. Since Steele’s pioneering work on
tail calls [22], implementors of FP languages often recognize TCE as a necessary
feature. Steele’s Rabbit Scheme compiler [23] introduced the “UUO handler”
that inspired our TCE technique using IFOs. Early on, some Scheme compilers
targeted C as an intermediate language and overcame the absence of TCE in
the backend compiler by using trampolines. Trampolines incur on performance



penalties and different techniques, with “Cheney on the M.T.A.” [3] being the
most known one, improved upon them. The limitations of the JVM architecture,
such as the lack of control over the memory allocation process, prevent a full
implementation of Baker’s technique.

Tail-Call Elimination on the JVM. Apart from the recent languages, such as
Scala [16] or Clojure [10], functional languages have targeted the JVM since
its early versions. Several other JVM functional languages support (self) tail
recursion optimization, but not full TCE. Examples include MLj [4] or Frege [28].
Later work [15] extended MLj with Selective TCE. This work used an effect
system to estimate the number of successive tail calls and introduced trampolines
only when necessary. Another approach to TCE in the JVM is to use an explicit
stack on the heap (an Object[] array) [6]. With such explicit stack for TCE, the
approach from Steele’s pioneering work [23] can also be encoded in the JVM.
Our work avoids the need for an explicit stack by using IFOs, thus allowing
for a more direct implementation of this technique. The Funnel compiler for
the JVM [19] used standard method calls and shrank the stack only after the
execution reached a predefined “tail call limit”. This dynamic optimization needs
careful tuning of the parameters, but can be possibly used to further improve
performance of our approach.

JVM Modifications. Proposals to modify the JVM [14], which would arguably
be a better solution for improving support for FP, appeared early on. One reason
why the JVM does not support tail calls was due to a claimed incompatibility of
a security mechanism based on stack inspection with a global TCE policy. The
abstract continuation-marks machine [7] refuted this claim. There exists one
modified Java HotSpotTMVM [20] with TCE support. The research Maxine VM
with its new self-optimizing runtime system [29] allows a more efficient execution
of JVM-hosted languages. Despite these and other proposals and JVM imple-
mentations, such as IBM J9, we are not aware of any concrete plans for adding
TCE support to the next official JVM release. Some other virtual machines de-
signed for imperative languages do not support TCE either. For example, the
standard Python interpreter lacks it, even though some enhanced variants can
overcome this issue [24]. Hence, ideas from our work can be applied outside of
the JVM ecosystem.

7 Conclusion & Future Work

Functional Programming in the JVM is already possible today. However, when
efficiency is a concern, programmers and compiler writers still need to be aware
of the limitations of the JVM. Some of the problems are the need for two function
representations; and the lack of a good solution for TCE. This paper shows that
IFOs allow for a uniform representation of functions, while being competitive in
terms of time performance and supporting TCE in constant space.

There is much to be done for future work. We would like to prove correctness
results for our translation from System F to Java. To achieve this, we will first



need a suitable formalization of Java that includes inner classes and imperative
features. Furthermore, we will adopt the thread-safe version of our translation
– one main difference is that IFOs should be allocated at their call sites rather
than at their definition sites. One other aspect is with currying and partial appli-
cations, where the uniform function representation is important. FAOs here can
have substantial time and memory overheads, especially when defining multi-
argument recursive functions, so current languages tend to avoid them and use
two representations: JVM methods when possible; and FAOs when necessary.
With additional optimizations in FCore, such as multi-argument closure opti-
mization and unboxing, IFOs serve as one uniform efficient function representa-
tion. We would like to formalize and refine a number of optimizations that we
have been experimenting with in FCore; and explore what other optimizations
are possible with IFOs. Finally, we want to build frontends for realistic functional
languages on top of FCore and write large functional programs, including a full
bootstrapping compiler of FCore, in those frontends.
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29. Würthinger, T., Wimmer, C., Wöß, A., Stadler, L., Duboscq, G., Humer, C.,

Richards, G., Simon, D., Wolczko, M.: One VM to Rule Them All. In: Proceedings
of the 2013 ACM International Symposium on New Ideas, New Paradigms, and
Reflections on Programming & Software (2013)

clojuredocs.org/clojure.core/recur
github.com/Frege/frege

	Memory-efficient Tail Calls in the JVM with Imperative Functional Objects

